Cilt 20, Sayı 3, Sayfalar 132 - 138 2017-08-31

Fractional Order Generalized Thermoelastic Problem in a Thick Circular Plate with Periodically Varying Heat Source

J.J. Tripathi [1] , K.C. Deshmukh [2] , J. Verma [3]

23 43

This paper is concerned with fractional order thermoelastic response due to a heat source whose magnitude varies periodically with time within the context of generalized thermoelasticity with one relaxation time. Traction free boundary conditions are considered and the thick circular plate is subjected to a given axisymmetric temperature distribution. Integral transform technique is used to derive the solution in the transformed domain. Laplace transforms are inverted using a numerical scheme. Mathematical model is prepared for Copper material and results for temperature, displacement and stress distributions are computed and represented graphically.

Fractional order; thermoelastic; thick plate; relaxation time; heat source
  • [1] H. Lord, Y. Shulman, “A Generalized Dynamical theory of thermoelasticity,” J. Mechanics Physics Solids, 15, 299-307, 1967.
  • [2] S. H. Mallik, M. Kanoria, “A Two dimensional problem for a transversely isotropic generalized thermoelastic thick plate with spatially varying heat source,” European J. Mechanics A/Solids, 27, 607–621, 2008.
  • [3] N. M. El-Maghraby, “A two dimensional problem for a thick plate and heat sources in Generalized thermoelasticity,” J. Thermal Stresses, 28, 1227-1241, 2005.
  • [4] J. J. Tripathi, G. D. Kedar, K. C. Deshmukh, “Dynamic Problem of Generalized Thermoelasticity for a Semi-infinite Cylinder with Heat Sources,” J. Thermoelasticity , 2, 1-8, 2014.
  • [5] J. J. Tripathi, G. D. Kedar, K. C. Deshmukh, “Generalized thermoelastic diffusion problem in a thick circular plate with axisymmetric heat supply,” Acta Mech., 226, 2121-2134, 2015.
  • [6] J. J. Tripathi, G. D. Kedar, K. C. Deshmukh, “Two dimensional generalized thermoelastic diffusion in a half space under axisymmetric distributions,” Acta Mech., 226, 3263-3274, 2015.
  • [7] Y.Z. Povstenko, “Fractional heat conduction equation and associated thermal stress,” J. Thermal Stresses, 28, 83–102, 2005.
  • [8] Y.Z. Povstenko, “Fractional heat conduction equation and associated thermal stresses in an infinite solid with a spherical cavity,” Quart. J. Mech. Appl. Math., 61, 523–547, 2008.
  • [9] Y.Z. Povstenko, “Fractional radial diffusion in an infinite medium with cylindrical cavity,” Quart. Appl. Math., 67, 113–123, 2009.
  • [10] Y.Z. Povstenko, “Fractional radial heat conduction in an infinite medium with a cylindrical cavity and associated thermal stresses,” Mech. Res. Commun., doi: 10.1016/j.mechrescom. 2010.04.006.
  • [11] H. H. Sherief, A. El-Sayed, A. A. El-Latief, “Fractional order theory of thermoelasticity,” Int. J. Solids Struct. , 47, 269–275, 2010.
  • [12] M. A. Ezzat, A. S. El-Karamany, “Fractional order theory of a perfect conducting thermoelastic medium,” Can. J. Phys., 89, 311-318, 2011.
  • [13] M. A. Ezzat, A. S. El-Karamany, “Theory of Fractional order in electro-thermo-elasticity,” Eur. J. Mech. A/Solids, 30, 491-500, 2011.
  • [14] H. H. Sherief, A. El-Sayed, A. A. El-Latief, “Fractional order theory of thermoelasticity,” Int. J. Solids Struct., 47, 269–275, 2010.
  • [15] M. Baccher, “Deformations due to periodically varying heat sources in a reference temperature dependent thermoelastic porous material with a time free heat conduction law,” IRJET, 2, 145-152, 2015.
  • [16] M. Islam, M. Kanoria, “Short time analysis of magnetothermoelastic wave under fractional order heat conduction law,” J. Thermal Stresses, 38, 1219-1249, 2015.
  • [17] W. E. Raslan, “Application of Fractional order theory of thermoelasticity in a thick plate under axisymmetric temperature distribution,” J. Thermal Stresses, 38, 733-743, 2015.
  • [18] J.J. Tripathi, G.D. Kedar, K.C. Deshmukh, “Generalized thermoelastic diffusion in a thick circular plate including heat source,” Alexandria Engineering J., 55, 2241-2249, 2016.
  • [19] N, Sarkar, “Wave propagation in an initially stressed elastic half-space solids under time-fractional order two-temperature magneto-thermoelasticity,” Eur. Phys. J. Plus, 132, 154, 2017.
  • [20] J. J. Tripathi, G. D. Kedar, K. C. Deshmukh, “Dynamic problem offractional order thermoelasticity for a thick circular plate with finite wave speeds,” J. Thermal Stresses, 39, 220-230, 2016.
  • [21] S. D. Warbhe, J. J. Tripathi, K. C. Deshmukh, J. Verma, “Fractional Heat Conduction in a Thin Circular Plate With Constant Temperature Distribution and Associated Thermal Stresses,” J. Heat Transfer, 139, 044502, 2017.
  • [22] X. Chunbao, N. Yanbo, “Fractional-order generalized thermoelastic diffusion theory,” Applied Mathematics Mechanics, 38, 1091-1108, 2017.
  • [23] D. P. Gaver, “Observing Stochastic processes and approximate transform inversion,” Operations Res., 14, 444-459, 1966.
  • [24] H. Stehfast, “Algorithm 368, Numerical inversion of Laplace transforms,” Comm. Ass’n. Comp. Mach., 13, 47-49, 1970.
  • [25] H. Stehfast, “Remark on algorithm 368, Numerical inversion of Laplace transforms,” Comm. Ass’n. Comp., 3, 624, 1970.
  • [26] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. A. Vetterling, Numerical Recipes, Cambridge University Press, Cambridge, the art of scientific computing, 1986.
Konular Mühendislik ve Temel Bilimler
Dergi Bölümü Regular Original Research Article
Yazarlar

Yazar: J.J. Tripathi
E-posta: tripathi.jitesh@gmail.com

Yazar: K.C. Deshmukh
E-posta: tripathi.jitesh@gmail.com

Yazar: J. Verma
E-posta: tripathi.jitesh@gmail.com

Bibtex @araştırma makalesi { eoguijt336651, journal = {International Journal of Thermodynamics}, issn = {1301-9724}, address = {Yaşar DEMİREL}, year = {2017}, volume = {20}, pages = {132 - 138}, doi = {}, title = {Fractional Order Generalized Thermoelastic Problem in a Thick Circular Plate with Periodically Varying Heat Source}, language = {en}, key = {cite}, author = {Deshmukh, K.C. and Tripathi, J.J. and Verma, J.} }
APA Tripathi, J , Deshmukh, K , Verma, J . (2017). Fractional Order Generalized Thermoelastic Problem in a Thick Circular Plate with Periodically Varying Heat Source. International Journal of Thermodynamics, 20 (3), 132-138. Retrieved from http://dergipark.gov.tr/eoguijt/issue/31047/336651
MLA Tripathi, J , Deshmukh, K , Verma, J . "Fractional Order Generalized Thermoelastic Problem in a Thick Circular Plate with Periodically Varying Heat Source". International Journal of Thermodynamics 20 (2017): 132-138 <http://dergipark.gov.tr/eoguijt/issue/31047/336651>
Chicago Tripathi, J , Deshmukh, K , Verma, J . "Fractional Order Generalized Thermoelastic Problem in a Thick Circular Plate with Periodically Varying Heat Source". International Journal of Thermodynamics 20 (2017): 132-138
RIS TY - JOUR T1 - Fractional Order Generalized Thermoelastic Problem in a Thick Circular Plate with Periodically Varying Heat Source AU - J.J. Tripathi , K.C. Deshmukh , J. Verma Y1 - 2017 PY - 2017 N1 - DO - T2 - International Journal of Thermodynamics JF - Journal JO - JOR SP - 132 EP - 138 VL - 20 IS - 3 SN - 1301-9724-2146-1511 M3 - UR - Y2 - 2017 ER -
EndNote %0 International Journal of Thermodynamics Fractional Order Generalized Thermoelastic Problem in a Thick Circular Plate with Periodically Varying Heat Source %A J.J. Tripathi , K.C. Deshmukh , J. Verma %T Fractional Order Generalized Thermoelastic Problem in a Thick Circular Plate with Periodically Varying Heat Source %D 2017 %J International Journal of Thermodynamics %P 1301-9724-2146-1511 %V 20 %N 3 %R %U