Yıl 2018, Cilt 11, Sayı 3, Sayfalar 263 - 286 2018-07-31

A Comprehensive Survey of Deep Learning in Crowd Analysis
Derin Öğrenme ile Kalabalık Analizi Üzerine Detaylı Bir Araştırma

Merve AYYÜCE KIZRAK [1] , Bülent BOLAT [2]

816 1265

Artificial neural networks and machine learning have been used to solve many problems for decades. The complexity of the problems and models and the increase in the number of data also brought with it the computation burden. In this study, the whole transition process from artificial neural networks to deep learning, models and applications are briefly demonstrated. Additionally information about hardware, software, and used libraries is also provided. In particular, canonical methods for crowd analysis have been summarized. Deep learning approaches in the literature are pointed out in depth for crowd analysis and datasets are overviewed. Furthermore, studies done in recent years have been analyzed and compared. Consequently, crowd analysis is both an academic and a practical field of study where successful results evaluation. As a result, crowd analysis is both an academic and a practical field where fruitful results are achieved with the help of deep learning.

Yapay sinir ağları ve makine öğrenmesi, uzun yıllardır birçok problemin çözümünde kullanılmıştır. Problemlerin ve modellerin karmaşıklaşması ve veri sayısındaki artış hesaplama yükünü de beraberinde getirmiştir. Bu çalışmada yapay sinir ağlarından derin öğrenmeye tüm geçiş süreci, modeller ve pratik uygulamalar kısa ve öz gösterilmiştir. Ayrıca donanım, yazılım ve kullanılan kütüphaneler hakkında da bilgiler verilmiştir. Özel olarak kalabalık analizi için kullanılan geleneksel yöntemler özetlenmiştir. Kalabalık analizi için literatürdeki derin öğrenme yaklaşımları detaylıca anlatılmış ve veri kümeleri tanıtılmıştır. Ayrıca son yıllarda yapılmış çalışmalar analiz edilmiş ve karşılaştırılmıştır. Sonuç olarak, kalabalık analizi, derin öğrenme yardımıyla başarılı sonuçlar alınan hem akademik hem de pratik bir çalışma alanıdır.
  • [1] V. D. Sindagi ve V. M. Patel, “A Survey of Recent Advances in CNN-Based Single Image Crowd Counting and Density Estimation”, Pattern Recognition Letters, Elsevier, 2017b.
  • [2] F. Rosenblatt, The Perceptron a Perceiving and Recognizing Automaton, Cornell Aeronautical Laboratory, 1957.
  • [3] A. G. Ivakhnenko ve V. G. Lapa, Cybernetic Predicting Devices, Purdue University School of Electrical Engineering, 1965.
  • [4] K. Fukushima, “Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position”, Biological Cybernetics by Springer-Verlag, Volume 36, pp 193 202, 1980.
  • [5] G. E. Hinton, “Learning Distributed Representations of Concepts”, Proceedings of the Eighth Annual Conference of the Cognitive Science Society, Amherst, Mass. Reprinted in Morris, R. G. M. editor, Parallel Distributed Processing: Implications for Psychology and Neurobiology, Oxford University Press, Oxford, UK, pp 46-61, 1986.
  • [6] D. E. Rumelhart, G. E. Hinton ve R. J. Williams, “Learning Representations by Back-Propagating Errors”, Nature, Volume 323, pp 533-536, 1986.
  • [7] M. Newborn, “Deep Blue's Contribution to AI”, Annals of Mathematics and Artificial Intelligence, Volume 28, (1–4), pp 27-30, 2000.
  • [8] D. Ferrucci, A. Levas, S. Bagchi, D. Gondek ve E. Mueller, “Watson: Beyond Jeopardy!”, Artificial Intelligence, volume 199-200, pp 93-105, 2013.
  • [9] Y. LeCun, Y. Bengio ve P. Haffner, “Gradient Based Learning Applied to Document Recognition”, Proceeding of IEEE, 1998.
  • [10] Internet: W. Knight, AI Winter Isn’t Coming, Intelligent Machines, MIT Technology Review, https://www.technologyreview.com/s/603062/ai-winter-isnt-coming/, 07.11. 2016.
  • [11] A. Krizhevsky, I. Sutskever ve G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks”, Advances in Neural Information Processing Systems25 (NIPS’12), 2012.
  • [12] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke ve A. Rabinovich, “Going Deeper with Convolutions”, In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15), pp 1-9, 2015.
  • [13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville ve Y. Bengio, “Generative Adversarial Nets”, Advances in Neural Information Processing Systems, pp 2672-2680, 2014.
  • [14] Internet: F. Ferreira, How Tay “Machine Learned” Her Way to Become a Twitter Troll, Harvard University, Graduate School of Arts and Science, SITN, Science in the News, 12 Nisan 2016, http://sitn.hms.harvard.edu/flash/2016/how-tay-machine-learned-her-way-to-become-a-twitter-troll/, 20.01.2018.
  • [15] Internet: D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel ve D. Hassabis, Mastering the game of Go with deep neural networks and tree search, doi:10.1038/nature16961, Nature | Vol 529 | 28 Ocak 2016 https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf, 21.11.2017.
  • [16] S. Sabour, N. Frosst ve G. E. Hinton, “Dynamic Routing Between Capsules”, 31st Conference on Neural Information Processing Systems (NIPS’17), Long Beach, CA, USA, 2017.
  • [17] E. Alpaydın, Yapay Öğrenme, Boğaziçi Üniversitesi Yayınevi, Türkiye, 2011.
  • [18] Internet: A. Karpathy, Stanford University, Stanford CS class CS231n: Convolutional Neural Networks for Visual Recognition, Course Notes, 20.03.2018.
  • [19] B. Widrow ve M. E. Hoff, “Associative Storage and Retrieval of Digital Information in Networks of Adaptive ‘Neurons’”, Biological Prototypes and Synthetic Systems, Volume 1: pp 160, 1962.
  • [20] C. Cortes ve V. Vapnik, “Support-Vector Networks”, Kluwer Academic Publishers, Journal of Machine Learning, Volume 20(3), pp 273-297, 1995.
  • [21] R. C. Gonzalez, R. E. Woods, Digital Image Processing, Pearson Publication, 1977.
  • [22] Internet: M. Nielsen, Y. Bengio, I. Goodfellow ve A. Courville, Deep Learning Book, http://neuralnetworksanddeeplearning.com/, 2016, 10.2017.
  • [23] M. D. Zeiler ve R. Fergus, “Visualizing and Understanding Convolutional Networks”, European Conference on Computer Vision (ECCV’14), pp 818-833, 2013.
  • [24] K. He, X. Zhang, S. Ren ve J. Sun, “Deep Residual Learning for Image Recognition”, In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15), pp 770-778, 2015.
  • [25] M. Lin, Q. Chen ve S. Yan, “Network in Network”, Neural and Evolutionary Computing (cs.NE); Computer Vision and Pattern Recognition (cs. CV); Learning (cs. LG), 2014.
  • [26] C. Szegedy, S. Ioffe, V. Vanhoucke ve A. Alemi, “Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning”, Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17), pp 4278-4284, 2016.
  • [27] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens ve Z. Wojna, “Rethinking the Inception Architecture for Computer Vision”, In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16), pp 2818-2826, 2016.
  • [28] R. Girshick, J. Donahue, T. Darrell ve J. Malik, “Rich Feature Hierarchies for Accurate Object Detection And Semantic Segmentation”, In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’14), pp 580-587, 2014.
  • [29] A. Ng, Y. B. Mourri, K. Katanforoosh, Coursera, Deep Learning Specialization, Convolutional Neural Networks, https://www.coursera.org/learn/convolutional-neural-networks, 02.01.2017.
  • [30] S. Hochreiter ve J. Schmidhuber, “Long Short-Term Memory”, Neural Computation, Volume 9(8): pp 1735-1780, 1997.
  • [31] Internet: A. Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks, http://karpathy.github.io/2015/05/21/rnn-effectiveness/, 21 Mayıs 2015, 09.01.2018.
  • [32] Internet: Kaggle Survey, The State of Data Science & Machine Learning, https://www.kaggle.com/surveys/2017, 20.09.2017.
  • [33] A. Şeker, B. Diri ve H. H. Balık, “Derin Öğrenme Yöntemleri ve Uygulamaları Hakkında Bir İnceleme”, Gazi Mühendislik Bilimleri Dergisi, Volume 3(3): pp 47-64, 2017.
  • [34] Internet: M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, ve X. Zheng, TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, https://www.tensorflow.org/, 01.05.2017.
  • [35] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama ve T. Darrell, “Caffe: Convolutional Architecture for Fast Feature Embedding”, Proceeding MM '14 Proceedings of the 22nd ACM international conference on Multimedia, pp 675-678, 2014.
  • [36] Internet: R. Collobert, C. Farabet ve K. Kavukcuoğlu, Torch | Scientific computing for LuaJIT, NIPS Workshop on Machine Learning Open Source Software, http://torch.ch/, 01.05.2017.
  • [37] Internet: F. Chollet, Keras, https://keras.io/,10.10.2017.
  • [38] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang ve Z. Zhang, “MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems”, In Neural Information Processing Systems, Workshop on Machine Learning Systems, ArXiv, 2016.
  • [39] F. Seide ve A. Agarwal, “CNTK: Microsoft's Open-Source Deep-Learning Toolkit”, Proceeding KDD'16 Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 2135-2135, 2016.
  • [40] Internet: Skymind, Deeplearning4j: Open-source, Distributed Deep Learning for the JVM, https://deeplearning4j.org/, 10.10.2017.
  • [41] Internet: D. Yuret, Welcome to Knet.jl’s documentation!, http://denizyuret.github.io/Knet.jl/latest/, 10.08.2016.
  • [42] Theano Development Team, “Theano: A {Python} framework for fast computation of mathematical expressions,” ArXiv e-prints, Volume abs/1605.02688, 2016.
  • [43] J. C. S. Jacques Junior, S. R. Musse ve C. R. Jung, “Crowd Analysis using Computer Vision Tecniques,” In IEEE Signal Processing Magazine, Volume 27, pp 66-77, 2010.
  • [44] M. A. Kızrak ve B. Bolat, “A Novel Approach for People Counting and Tracking from Crowd Video,” In IEEE International Conference on Innovations in Intelligent SysTems and Applications (INISTA), 2017.
  • [45] J. Hwang, C. Chu, H. Pai ve K. Lan, “Tracking Human Under Occlusion Based On Adaptive Multiple Kernels With Projected Gradients”, In IEEE Transaction on Multimedia, Volume 15, No. 7, pp 1602-1615, 2013.
  • [46] B. Zhan, D. N. Monekosso, P. Remagnino, S. A. Velastin ve L. Q. Xu, “Crowd Analysis: A Survey”, Machine Vision Application, Volume 19, No. 2, pp 345-357, 2008.
  • [47] T. Li, H. Chang, M. Wang, B. Ni, R. Hong ve S. Yan, “Crowded Scene Analysis: A Survey”, IEEE Transactions on Circuits and Systems for Video Technology, Volume 25, No. 3, pp 367-386, 2015.
  • [48] S. Ali, M. Shah, “Floor Fields for Tracking in High Density Crowd Scenes”, 10th European Conference on Computer Vision (ECCV), Lecture Notes in Computer Science, Volume 5303, 2008, pp 1-14, 2008.
  • [49] Y. Mao, J. Tong ve W. Xiang, “Estimation of Crowd Density using Multi-Local Features and Regression”, Proceedings of the 8th World Congress on Intelligent Control and Automotion, pp 6295-6300, 2010.
  • [50] W. Ma, L. Huang ve C. Liu, "Crowd Density Analysis using Co-Occurrence Texture Features", In 5th International Conference on Computer Sciences and Convergence Information Technology (ICCIT’10), pp 170-175, 2010.
  • [51] J. Guo, X. Wu, T. Cao, S. Yu ve Y. Xu, “Crowd Density Estimation via Markov Random Field (MRF)”, Proceedings of 8th World Congress on Intelligent Control and Automation, pp 258-263, 2010.
  • [52] W. Li, X. Wu, K. Matsumoto ve H. Zhao, “A New Approach of Crowd Density Estimation”, IEEE Region 10 Conference TENCON, pp 200-203, 2010.
  • [53] W. Li, X. Wu, K. Matsumoto ve H. Zhao, “Crowd Density Estimation: An Improved Approach”, IEEE 10th International Conference on Signal Processing (ICSP’10), pp 1213-1216, 2010.
  • [54] W. Ge ve R. T. Collins, “Crowd Density Analysis with Marked Point Processes,” In IEEE Signal Processing Magazine, Volume 27, pp 107-123, 2010.
  • [55] G. Kim, K. Eom, M. Kim ve J. Jung, “Automated Measurement of Crowd Density Based on Edge Detection and Optical Flow”, In IEEE 2nd International Conference on Industrial Mechatronics and Automation, Volume 2, pp 553-556, 2010.
  • [56] W. Hsu, K. Lin ve C. Tsai, “Crowd Density Estimation Based on Frequency Analysis,” 7th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp 348-351, 2011.
  • [57] G. Xiong, X. Wu, J. Cheng, Y. Chen, Y. Ou ve Y. Liu, “Crowd Density Estimation Based on Image Potential Energy Model”, Proceedings of the IEEE International Conference on Robotics and Biometrics (ROBIO), pp 538-543, 2011.
  • [58] H. Yu, Z. He, Y. Liu ve L. Zhang, “A Crowd Flow Estimation Method Based on Dynamic Texture and GRNN”, 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp 79-84, 2012.
  • [59] H. Yang ve H. Zhao, “A Novel Method for Crowd Density Estimations”, IET International Conference on Information Science and Control Engineering (ICISCE), pp 1-4, 2012.
  • [60] V. B. Subburaman, A. Descamps ve C. Carincotte, “Counting People in the Crowd using a Generic Head Detector”, IEEE 9th International Conference on Advenced Video and Signal-Based Surveillance, pp 470-475, 2012.
  • [61] A. Chan ve N. Vasconcelos, “Counting People with Low-Level Features and Bayesion Regression”, IEEE Transactions on Image Processing, Volume 21, No. 4, pp. 2160-2177, 2012.
  • [62] A. B. Chan ve N. Vasconcelos, “Modeling, Clustering and Segmenting Video with Mixtures of Dynamic Textures”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 30(5): pp 909–926, 2008.
  • [63] A. B. Chan, Z. J. Liang ve N. Vasconcelos, “Privacy Preserving Crowd Monitoring: Counting People without People Models or Tracking”, In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’08), pp 1–7, 2008.
  • [64] Z. Wang, H. Liu, Y. Qian ve T. Xu, “Crowd Density Estimation Based on Local Binary Pattern Co-Occurence Matrix”, IEEE International Conference on Multimedia and Expo Workshops (ICMEW), pp 372-377, 2012.
  • [65] H. Fradi ve J. Dugelay, “People Counting System in Crowded Scenes Based on Feature Regression”, Proceedings of the 20th European Signal Processing Conference (EUSIPCO), pp 136-140, 2012.
  • [66] H. Fradi ve J. Dugelay, “Crowd Density Map Estimation Based on Features Tracks”, In IEEE 15th International Workshop on Multimedia Signal Processing, pp 40-45, 2013.
  • [67] F. Tehranipour, R. Shishegar, S. Tehrenipour ve S. Seterehdan, “Attention Control Using Fuzzy Inference System in Monitoring CCTV Based on Crowd Density Estimation”, IEEE 8th Iranian Conference on Machine Vision and Image Processing (MVIP), pp 204-209, 2013.
  • [68] H. Fradi, X. Zhao ve J. Dugelay, “Crowd Density Analysis using Subspace Learning on Local Binary Pattern,” In IEEE International Conference on Multimedia and Expo Workshops (ICMEW), pp 1-6, 2013.
  • [69] A. S. Rao, J. Gubbi, S. Marusic, P. Stanley ve M. Palaniswami, “Crowd Density Estimation Based on Optical Flow and Hierarchical Clustering,” IEEE International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp 494-499, 2013.
  • [70] Y. Yuan, J. Zhao ve C. Qui, “Estimating Crowd Density in an RF-Based Dynamic Environment”, IEEE Sensors Journal, Volume 13, No. 10, pp 3837-3845, 2013.
  • [71] P. Karpagavalli ve A. V. Ramprasad, “Estimating the Density of the People and Counting the Number of People in a Crowd Environment for Human Safety”, In IEEE International Conference on Communication and Signal Processing, pp. 663-667, 2013.
  • [72] Z. Wu, H. Zheng ve J. Wang, “Pedestrian Counting Based on Crowd Density Estimation and Lucas-Kanade Optical Flow”, IEEE 7th International Conference on Image and Graphics (ICIG), pp 471-476, 2013.
  • [73] K. Ping, P. Bo, Z. Wenying ve L. Shuai, “Research on Central Issues of Crowd Density Estimation”, 10th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), pp 143-145, 2013.
  • [74] Y. Yuan, “Crowd Monitoring using Mobile Phones”, IEEE 6th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), Volume 1, pp 261-264, 2014.
  • [75] M. Khansari, H. R. Rabiee, M. Asadi ve M. Ghanbari, “Object Tracking in Crowded Video Scenes Based on the Undecimated Wavelet Features and Texture Analysis”, Hindawi Publishing Corparation, EURASIP Journal on Advances in Signal Processing, pp18, 2008.
  • [76] M. Rodriguez, I. Laptev, J. Sivic ve J. Audibert, “Density-Aware Person Detection and Tracking in Crowds”, IEEE Internatinal Conference on Computer Vision, pp 2423-2430, 2011.
  • [77] M. Rodriguez, J. Sivic, I. Laptev ve J. Audibert, “Data-Driven Crowd Analysis in Videos”, In IEEE International Conference on Computer Vision, pp 1235-1242, 2011.
  • [78] D. Conte, P. Foggia, G. Percannella, F. Tufano ve M. Vento, “A Method for Counting Moving People in Video Surveillance Videos”, EURASIP Journal on Advances in Signal Processing, Volume (1):231240, 2010.
  • [79] G. Antonini ve J-P. Thiran, “Counting Pedestrians in Video Sequences Using Trajectory Clustering”, IEEE Transactions on Circuits and Systems for Video Technology, Volume 16(8), pp 1008–1020, 2006.
  • [80] E. L. Andrade, S. Blunsden ve R. B. Fisher, “Modelling Crowd Scenes for Event Detection”, In Pattern Recognition (ICPR’06) 18th International Conference on, Volume 1, pp 175–178, 2006.
  • [81] X. Wang, X. Ma ve W. E. L. Grimson, “Unsupervised Activity Perception in Crowded and Complicated Scenes using Hierarchical Bayesian Models”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 31, No. 3, pp 539-555, 2009.
  • [82] C. C. Loy, T. Xiang ve S. Gong, “Multi-Camera Activity Correlation Analysis”, In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’09), pp 1988-1995, 2009.
  • [83] R. Mehran, A. Oyama ve M. Shah, “Abnormal Crowd Behavior Detection using Social Force Model”, In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’09), pp 935-942, 2009.
  • [84] T. Hospedales, S. Gong ve T. Xiang, “A Markov Clustering Topic Model for Mining Behaviour in Video”, In IEEE 12th International Conference on Computer Vision, pp 1165–1172, 2009.
  • [85] S. Ali ve M. Shah, “A Lagrangian Particle Dynamics Approach for Crowd Flow Segmentation and Stability Analysis”, In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’07), pp 1–6, 2007.
  • [86] J. Liu, B. Kuipers ve S. Savarese,” Recognizing Human Actions by Attributes”, In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’11), pp 3337-3344, 2011.
  • [87] B. Zhou, X. Tang ve X. Wang, “Coherent Filtering: Detecting Coherent Motions from Crowd Clutters”, Computer Vision (ECCV’12), pp 857-871, 2012.
  • [88] B. Zhou, X. Tang ve X. Wang, “Measuring Crowd Collectiveness”, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR’13), pp 3049-3056, 2013.
  • [89] J. Shao, C. C. Loy ve X. Wang, “Scene-Independent Group Profiling in Crowd”, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR’14), pp 2219-2226, 2014.
  • [90] K. Kang ve X. Wang, “Fully Convolutional Neural Networks for Crowd Segmentation”, ArXiv preprint, arXiv:1411.4464, 2014.
  • [91] S. Yi, X. Wang, C. Lu ve J. Jia, “L0 Regularized Stationary Time Estimation for Crowd Group Analysis”, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’14), pp 2211-2218, 2014.
  • [92] F. Zhu, X. Wang ve N. Yu, “Crowd Tracking with Dynamic Evolution of Group Structures”, In European Conference on Computer Vision, Springer, pp 139-154, 2014.
  • [93] B. Zhou, X. Tang ve X. Wang, “Learning Collective Crowd Behaviors with Dynamic Pedestrian-Agents”, International Journal of Computer Vision, Volume 111(1): pp 50-68, 2015.
  • [94] S. Yi, H. Li ve X. Wang, “Understanding Pedestrian Behaviors from Stationary Crowd Groups”, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 3488-3496, 2015.
  • [95] J. Shao, K. Kang, C. C. Loy ve X. Wang, “Deeply Learned Attributes for Crowded Sscene Understanding”, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15), pp 4657-4666, 2015.
  • [96] B. Zhou, X. Wang ve X. Tang, "Understanding Collective Crowd Behaviors: Learning a Mixture Model of Dynamic Pedestrian-Agents", In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR’12), pp 2871-2878, 2012.
  • [97] N. Kumar, A. C. Berg, P. N. Belhumeur ve S. K. Nayar, “Attribute and Simile Classifiers for Face Verification”, In IEEE 12th International Conference on Computer Vision, pp 365–372, 2009.
  • [98] A. Farhadi, I. Endres, D. Hoiem ve D. Forsyth, “Describing Objects by Their Attributes”, In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’09), pp 1778–1785, 2009.
  • [99] C. H. Lampert, H. Nickisch ve S. Harmeling, “Learning to Detect Unseen Object Classes by Between-Class Attribute Transfer”, In IEEE Conference on Computer Vision and Pattern Recognition (CVPR'09), pp 951–958, 2009.
  • [100] T. L. Berg, A. C. Berg ve J. Shih, “Automatic Attribute Discovery and Characterization from Noisy Web Data.” In European Conference on Computer Vision, Springer, pp 663–676, 2010.
  • [101] Y. Fu, T. Hospedales, T. Xiang ve S. Gong, “Attribute Learning for Understanding Unstructured Social Activity”, Computer Vision (ECCV’12), pp 530-543, 2012.
  • [102] G. Patterson ve J. Hays, “Sun Attribute Database: Discovering, Annotating, and Recognizing Scene Attributes”, In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’12), pp 2751-2758, 2012.
  • [103] A. Oliva ve A. Torralba, “Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope”, International Journal of Computer Vision, Volume 42(3): pp 145–175, 2001.
  • [104] F-F. Li, I. Asha, K. Christof ve P. Pietro, “What Do We Perceive in a Glance of a Real-World Scene?”, Journal of Vision, Volume 7(1): pp10-10, 2007.
  • [105] D. Parikh ve K. Grauman, “Interactively Building a Discriminative Vocabulary of Nameable Attributes”, In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’11), pp 1681-1688, 2011.
  • [106] F. Jiang, Y. Wu ve A. K. Katsaggelos, “Detecting Contextual Anomalies of Crowd Motion in Surveillance Video,” 16th IEEE International Conference on Image Processing (ICIP’09), pp 1117-1120, 2009.
  • [107] L. Kratz ve K. Nishino, “Anomaly Detection in Extremely Crowded Scenes using Spatio-Temporal Motion Pattern Models”, In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’09), pp 1446-1453, 2009.
  • [108] V. Mahadevan, W. Li, V. Bhalodia ve N. Vasconcelos, “Anomaly Detection in Crowded Scenes”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR’10), pp 1975-1981, 2010.
  • [109] V. Reddy, C. Sanderson ve B. C. Lovell, “Improved Anomaly Detection in Crowded Scenes via Cell-Based Analysis of Foreground Speed, Size and Textures”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 55-61, 2011.
  • [110] V. Saligrama ve Z. Chen, “Video Anomaly Detection Based on Local Statistical Aggregates”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR’12), pp 2112-2119, 2012.
  • [111] L. Cao ve K. Huang, “Video-Based Crowd Density Estimation and Prediction System for Wide-Area Surveillance”, Future Video Technology, China Communications, Volume 10, No.5, pp. 79-88, 2013.
  • [112] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar ve F-F. Li, “Large-Scale Video Classification with Convolutional Neural Networks”, In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR’14), pp 1725–1732, 2014.
  • [113] K. Simonyan ve A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” ArXiv preprint, arXiv:1409.1556, 2014.
  • [114] C. Zhang, H. Li, X. Wang ve X. Yang, “Cross-Scene Crowd Counting via Deep Convolutional Neural Networks”, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15), pp 833-841, 2015.
  • [115] H. Idrees, I. Saleemi, C. Seibert ve M. Shah, “Multi-Source Multi-Scale Counting in Extremely Dense Crowd Images”, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2547–2554, 2013.
  • [116] C. Wang, H. Zhang, L. Yang, Liu ve X. Cao, “Deep People Counting in Extremely Dense Crowds”, In Proceedings of the 23rd ACM international conference on Multimedia, pp 1299-1302, 2015.
  • [117] J. Li, L. Huang ve C. Liu, “An Efficient Self-Learning People Counting System”, In First Asian Conference on Pattern Recognition (ACPR’11), pp 125-129, 2011.
  • [118] L. Boominathan, SS. S. Kruthiventi ve R. V. Babu, “Crowdnet: A Deep Convolutional Network for Dense Crowd Counting”, In Proceedings of the 2016 ACM on Multimedia Conference, pp 640–644, 2016.
  • [119] N. Dalal ve B. Triggs, “Histograms of Oriented Gradients for Human Detection”, In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), Volume 1, pp 886–893, 2005.
  • [120] C. E. Rasmussen, C. K. I. Williams, Gaussian Processes for Machine Learning, University Press Group Limited, 2006.
  • [121] T. Xu, X. Chen, G. Wei ve W. Wang, “Crowd Counting using Accumulated HOG”, In IEEE 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC FSKD), pp 1877-1881, 2016.
  • [122] Y. Zhang, D. Zhou, S. Chen, S. Gao ve Y. Ma, “Single Image Crowd Counting via Multi-Column Convolutional Neural Network”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16), pp 589-597, 2016.
  • [123] L. Lebanoff ve H. Idrees, Counting in Dense Crowds using Deep Learning, REU Participants & Projects Final Report, University of Central California, 2015.
  • [124] D. Kang, D. Dhar ve A. B. Chan, “Crowd Counting by Adapting Convolutional Neural Networks with Side Information”. ArXiv preprint arXiv:1611.06748, 2016.
  • [125] L. Cao, X. Zhang, W. Ren ve K. Huang, “Large Scale Crowd Analysis Based on Convolutional Neural Network”, Pattern Recognition, Volume 48(10): pp 3016–3024, 2015.
  • [126] M. Marsden, K. McGuinness, S. Little ve N. E. O’Connor, “ResnetCrowd: A Residual Deep Learning Architecture for Crowd Counting, Violent Behaviour Detection and Crowd Density Level Classification”, 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp 1-7, 2016.
  • [127] C. Shang, H. Ai ve B. Bai, “End-to-End Crowd Counting via Joint Learning Local and Global Count”, In IEEE International Conference on Image Processing (ICIP’16), pp 1215-1219, 2016.
  • [128] Y. Hu, H. Chang, F. Nian, Y. Wang ve T. Li T, “Dense Crowd Counting from Still Images with Convolutional Neural Networks”, Journal of Visual Communication and Image Representation, Volume 38: pp 530–539, 2016.
  • [129] D. O˜noro, R. R. Lopez-Sastre, “Towards Perspective-Free Object Counting with Deep Learning”, Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 2016.
  • [130] C. Zhang, K. Kang, H. Li, X. Wang, R. Xie, X. Yang, “Datadriven Crowd Understanding: a Baseline for a Large-Scale Crowd Dataset”, IEEE Transactions on Multimedia, Volume 18, pp 1048-1061, 2016.
  • [131] S. Kumagai, K. Hotta ve T. Kurita, “Mixture of Counting CNNs: Adaptive Integration of CNNs Specialized to Specific Appearance for Crowd Counting”, ArXiv preprint, arXiv:1703.09393, 2017.
  • [132] V. D. Sindagi ve V. M. Patel, “CNN-Based Cascaded Multi-Task Learning of High-Level Prior and Density Estimation for Crowd Counting”, IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp1-6, 2017.
  • [133] D. B. Sam, S. Surya ve R. V. Babu, “Switching Convolutional Neural Network for Crowd Counting”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17), pp 4031-4019, 2017.
  • [134] Internet: UCSD Anomaly Detection Dataset, http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm, 01.10.2017.
  • [135] Internet: Mall Dataset, Crowd Counting Dataset, http://personal.ie.cuhk.edu.hk/~ccloy/downloads_mall_dataset.html, 01.10.2017.
  • [136] Internet: UCF_CC_50 Dataset, University of Central Florida, Center for Research in Computer Vision, http://crcv.ucf.edu/data/crowd_counting.php, 01.10.2017.
  • [137] Internet: WorldExpo’10, http://cs-chan.com/downloads_crowd_dataset.html, 18.02.2018.
  • [138] Internet: ShanghaiTech Part A, https://github.com/svishwa/crowdcount-mcnn, 01.10.2017.
  • [139] Internet: ShanghaiTech Part B, https://github.com/svishwa/crowdcount-mcnn, 01.10.2017.
  • [140] E. Walach ve L. Wolf, “Learning to Count with CNN Boosting”, European Conference on Computer Vision, Springer, pp 660-676, 2016.
  • [141] B. Sheng, C. Shen, G. Lin, J. Li, W. Yang, C. Sun, “Crowd Counting via Weighted Vlad on Dense Attribute Feature Maps”, IEEE Transactions on Circuits and Systems for Video Technology, pp 99, 2016.
Birincil Dil tr
Konular Bilgisayar Bilimleri, Bilgi Sistemleri
Dergi Bölümü Makaleler
Yazarlar

Yazar: Merve AYYÜCE KIZRAK (Sorumlu Yazar)
Kurum: HALİÇ ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ
Ülke: Turkey


Yazar: Bülent BOLAT
Kurum: YILDIZ TEKNİK ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ FAKÜLTESİ
Ülke: Turkey


Bibtex @araştırma makalesi { gazibtd419205, journal = {Bilişim Teknolojileri Dergisi}, issn = {1307-9697}, eissn = {2147-0715}, address = {Gazi Üniversitesi}, year = {2018}, volume = {11}, pages = {263 - 286}, doi = {10.17671/gazibtd.419205}, title = {Derin Öğrenme ile Kalabalık Analizi Üzerine Detaylı Bir Araştırma}, key = {cite}, author = {AYYÜCE KIZRAK, Merve and BOLAT, Bülent} }
APA AYYÜCE KIZRAK, M , BOLAT, B . (2018). Derin Öğrenme ile Kalabalık Analizi Üzerine Detaylı Bir Araştırma. Bilişim Teknolojileri Dergisi, 11 (3), 263-286. DOI: 10.17671/gazibtd.419205
MLA AYYÜCE KIZRAK, M , BOLAT, B . "Derin Öğrenme ile Kalabalık Analizi Üzerine Detaylı Bir Araştırma". Bilişim Teknolojileri Dergisi 11 (2018): 263-286 <http://dergipark.gov.tr/gazibtd/issue/38691/419205>
Chicago AYYÜCE KIZRAK, M , BOLAT, B . "Derin Öğrenme ile Kalabalık Analizi Üzerine Detaylı Bir Araştırma". Bilişim Teknolojileri Dergisi 11 (2018): 263-286
RIS TY - JOUR T1 - Derin Öğrenme ile Kalabalık Analizi Üzerine Detaylı Bir Araştırma AU - Merve AYYÜCE KIZRAK , Bülent BOLAT Y1 - 2018 PY - 2018 N1 - doi: 10.17671/gazibtd.419205 DO - 10.17671/gazibtd.419205 T2 - Bilişim Teknolojileri Dergisi JF - Journal JO - JOR SP - 263 EP - 286 VL - 11 IS - 3 SN - 1307-9697-2147-0715 M3 - doi: 10.17671/gazibtd.419205 UR - http://dx.doi.org/10.17671/gazibtd.419205 Y2 - 2018 ER -
EndNote %0 Bilişim Teknolojileri Dergisi Derin Öğrenme ile Kalabalık Analizi Üzerine Detaylı Bir Araştırma %A Merve AYYÜCE KIZRAK , Bülent BOLAT %T Derin Öğrenme ile Kalabalık Analizi Üzerine Detaylı Bir Araştırma %D 2018 %J Bilişim Teknolojileri Dergisi %P 1307-9697-2147-0715 %V 11 %N 3 %R doi: 10.17671/gazibtd.419205 %U 10.17671/gazibtd.419205
ISNAD AYYÜCE KIZRAK, Merve , BOLAT, Bülent . "Derin Öğrenme ile Kalabalık Analizi Üzerine Detaylı Bir Araştırma". Bilişim Teknolojileri Dergisi 11 / 3 (Temmuz 2018): 263-286. http://dx.doi.org/10.17671/gazibtd.419205