Yıl 2018, Cilt 31, Sayı 3, Sayfalar 831 - 844 2018-09-01

Fractional Order Darwinian PSO with Constraint Threshold for Load Flow Optimization of Energy Transmission System

Ozan AKDAĞ [1] , Fatih OKUMUŞ [2] , Adnan Fatih KOCAMAZ [3] , Celaleddin YEROĞLU [4]

49 63

This paper present an effective optimization algorithm for Optimal Power Flow (OPF) problem in electrical power systems. Fractional Order Darwinian Particle Swarm Optimization (FODPSO) algorithm is modified with constraint threshold limitation mechanism to solve OPF problem. Results are tested and compared with Vector PSO (VPSO) and some other optimization algorithms in the literature. FODPSO and VPSO algorithms are applied to obtain optimal settings of control variables in power system.  The algorithms are used to tune control parameters of real time 154kV east Anatolian transmission system to reduce power loses and to supply uninterrupted power flow. The results are applied to virtual model of the transmission system, obtained by DigSilent simulation software, to test without taking any risk that may occur in real time systems. Thus, optimal parameter settings are recommended for real time transmission system. Then, the proposed algorithm is applied to IEEE 14 bus-bar test system to show the effectiveness and results are compared with the other algorithms in literature.

optimization, Power system, Virtual model, Optimal power flow
  • [1] Ghanghro, S.P., Sahito, A., Memon, S., Jumani, M., Tunio, S. “Network Reconfiguration for Power Loss Reduction in Distribution System” , Sindh University Research Journal-SURJ, Vol.48, 2016. pp.53-56.
  • [2] Ela, E.L., Abou, A.A., ABIDO, M.A., SPEA, S.R. “Optimal power flow using differential evolution algorithm” , Electric Power Systems Research, 2010, 80.7: 878-885.
  • [3] Abaci, K., Yamacli, V., Akdağlı, A. “Optimal power flow with SVC devices by using the artificial bee colony algorithm”, Turkish Journal EE &CS; 2016; 24(1), pp.341-353.
  • [4] Adaryani, M.R., Karami, A. “Artificial bee colony algorithm for solving multi-objective optimal power flow problem”, International Journal of Electrical Power & Energy Systems;2013; 53: 219-230
  • [5] Bouchekara, H.R.E.H. “Optimal power flow using black-hole-based optimization approach” , Applied Soft Computing; 2014; 24: 879-888.
  • [6] Zhang, X., Yu, T., Yang, B., Cheng, L. “Accelerating bio-inspired optimizer with transfer reinforcement learning for reactive power optimization”, Knowledge-Based Systems, 2017, 116: 26-38.
  • [7] Nikham, T., Rasoul, N.M., Jabbari, M., Malekpour, A.R. “A modified shuffle frog leaping algorithm for multi-objective optimal powe flow” , Energy, 2011, 36.11: 6420-6432.
  • [8] Abido, M.A. “Optimal design of power-system stabilizers using particle swarm optimization” , IEEE Transactions on Energy conversion, 2002, 17.3: 406-413.
  • [9] Kadir, A.F.A, Mohamed, A., Shareef, H., Wanik, M.Z.C. (2013). “Optimal placement and sizing of distributed generations in distribution systems for minimizing losses and THDv using evolutionary programming” ,TJEE& Comp.Sci., 21, pp. 2269-2282.
  • [10] Lahmiri, S., Boukadoum, M. “An evaluation of particle swarm optimization techniques in segmentation of biomedica limages” , In Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation pp. 1313-1320.
  • [11] Xie, W., Li, Y. “An automatic fractional coefficient setting method of FODPSO for hyperspectral image segmentation”, In SPIE Sensing Technology+ Applications (pp. 95010D-95010D). International Society for Opticsand Photonics.
  • [12] Ryalat, M.H., Emmens, D., Hulse, M., Bell, D., Al-Rahamneh, Z., Laycock, S., Fisher, M. (2016, September). “Evaluation of particle swarm optimisation for medical image segmentation”, In International Conference on Systems Science pp. 61-72.
  • [13] https://hvdc.ca/uploads/knowledge_base/ieee_14_bus_technical_note.pdf? (Last accessed January 18, 2018)
  • [14] Kennedy, J., Eberhart, R. A. “new optimizer using particle swarm theory”, In Proceedings of IEEE Sixth International Symposium on Micro Machine Human Science Vol. 34, Issue 2008, pp. 39–43.
  • [15] Valle, Y.D., Venayagamoorthy, G.K., Mohagheghi, S., Hernandez, J.C., Harley, R. “Particle swarm optimization: Basic concepts, variants and applications in power systems”, IEEE Transactions on Evolutionary Computation; 2008, 2(2): 171–195
  • [16] Tillett, J., Rao, T.M., Sahin, F., Rao, R, Brockport, S. “Darwinian particle swarm optimization”, In B. Prasad (Ed.), Proceedings of the 2nd Indian International Conference on Artificial Intelligence Pune, India; 2008; pp. 1474–1487.
  • [17] Pires, E.J., Machado, J.A., Cunha, P.B, Mendes, L. “Particle swarm optimization with fractional-order velocity”, Journal on Nonlinear Dynamics; 2010, 61(1–2): 295–301.
  • [18] Couceiro, M.S., Ghamisi, P. “Fractional Order Darwinian PSO: Applications and Evaluation of an Evolutionary Algorithm”, Springer, Londen, 2015.
  • [19] Ostalczyk, P.W. “A note on the Grünwald-Letnikov fractional-order backward-difference”, Physica Scripta; 2009; 136, 014036.
  • [20] Omkar, S.N., Mudigere, D., Naik, G.N. “Vector evaluated particle swarm optimization (VEPSO) for multi-objective design optimization of composite structures”, Computers & structures, 2008, 86.1: 1-14.
  • [21] Ayan, K., Kılıç, U. “Optimal reaktif güç akışının kaotik yapay arı kolonisi ile çözümü”, 6th (IATS’11) 2011, Elazığ-Türkiye, 20-24
  • [22] Nachimuthu, D.S., Basha, R.J. “Reactive Power Loss Optimization for an IEEE 14-Bus Power System Using Various Algorithms”, IU-Journal of Electrical & Electronics Engineering; 2014; 14(1), 1737-1744.
Konular
Dergi Bölümü Electrical & Electronics Engineering
Yazarlar

Yazar: Ozan AKDAĞ (Sorumlu Yazar)
Ülke: Turkey


Yazar: Fatih OKUMUŞ
Ülke: Turkey


Yazar: Adnan Fatih KOCAMAZ
Ülke: Turkey


Yazar: Celaleddin YEROĞLU
Ülke: Turkey


Bibtex @araştırma makalesi { gujs383779, journal = {Gazi University Journal of Science}, issn = {}, eissn = {2147-1762}, address = {Gazi Üniversitesi}, year = {2018}, volume = {31}, pages = {831 - 844}, doi = {}, title = {Fractional Order Darwinian PSO with Constraint Threshold for Load Flow Optimization of Energy Transmission System}, key = {cite}, author = {AKDAĞ, Ozan and OKUMUŞ, Fatih and YEROĞLU, Celaleddin and KOCAMAZ, Adnan Fatih} }
APA AKDAĞ, O , OKUMUŞ, F , KOCAMAZ, A , YEROĞLU, C . (2018). Fractional Order Darwinian PSO with Constraint Threshold for Load Flow Optimization of Energy Transmission System. Gazi University Journal of Science, 31 (3), 831-844. Retrieved from http://dergipark.gov.tr/gujs/issue/38948/383779
MLA AKDAĞ, O , OKUMUŞ, F , KOCAMAZ, A , YEROĞLU, C . "Fractional Order Darwinian PSO with Constraint Threshold for Load Flow Optimization of Energy Transmission System". Gazi University Journal of Science 31 (2018): 831-844 <http://dergipark.gov.tr/gujs/issue/38948/383779>
Chicago AKDAĞ, O , OKUMUŞ, F , KOCAMAZ, A , YEROĞLU, C . "Fractional Order Darwinian PSO with Constraint Threshold for Load Flow Optimization of Energy Transmission System". Gazi University Journal of Science 31 (2018): 831-844
RIS TY - JOUR T1 - Fractional Order Darwinian PSO with Constraint Threshold for Load Flow Optimization of Energy Transmission System AU - Ozan AKDAĞ , Fatih OKUMUŞ , Adnan Fatih KOCAMAZ , Celaleddin YEROĞLU Y1 - 2018 PY - 2018 N1 - DO - T2 - Gazi University Journal of Science JF - Journal JO - JOR SP - 831 EP - 844 VL - 31 IS - 3 SN - -2147-1762 M3 - UR - Y2 - 2018 ER -
EndNote %0 Gazi University Journal of Science Fractional Order Darwinian PSO with Constraint Threshold for Load Flow Optimization of Energy Transmission System %A Ozan AKDAĞ , Fatih OKUMUŞ , Adnan Fatih KOCAMAZ , Celaleddin YEROĞLU %T Fractional Order Darwinian PSO with Constraint Threshold for Load Flow Optimization of Energy Transmission System %D 2018 %J Gazi University Journal of Science %P -2147-1762 %V 31 %N 3 %R %U
ISNAD AKDAĞ, Ozan , OKUMUŞ, Fatih , KOCAMAZ, Adnan Fatih , YEROĞLU, Celaleddin . "Fractional Order Darwinian PSO with Constraint Threshold for Load Flow Optimization of Energy Transmission System". Gazi University Journal of Science 31 / 3 (Eylül 2018): 831-844.