Yıl 2018, Cilt 31, Sayı 3, Sayfalar 954 - 965 2018-09-01

Alpha Power Inverted Exponential Distribution: Properties and Application

Ceren ÜNAL [1] , Selen ÇAKMAKYAPAN [2] , Gamze ÖZEL [3]

80 121

In this study, we propose a new distribution based on the inverted exponential distribution called as “Alpha Power Inverted Exponential” distribution. We provide some of its statistical properties including hazard rate function, quantile function, skewness, kurtosis, and order statistics. The maximum likelihood method is used to estimate the model parameters. We prove empirically the importance and flexibility of the new distribution in modeling with real data applications. 

Inverted exponential distribution, quantile function, maximum likelihood estimation
  • Keller, A. Z., Kamath, A. R. R. and Perera, U. D., “Reliability analysis of CNC machine tools”, Reliability Engineering, 3(6): 449-473, (1982).
  • Lin, C. T., Duran, B. S. and Lewis, T. O., “Inverted gamma as a life distribution”, Microelectronics Reliability, 29(4): 619-626, (1989).
  • Oguntunde, P. E., Adejumo, A. and Owoloko, E. A., “On the Exponentiated Generalized Inverse Exponential Distribution”, World Congress on Engineering, London, 80-83, (2017).
  • Singh, S. K., Singh, U. and Kumar, D., “Bayes estimators of the reliability function and parameter of inverted exponential distribution using informative and non-informative priors”, Journal of Statistical Computation and Simulation, 83(12): 2258-2269, (2013).
  • Dey, S., “Inverted exponential distribution as a life distribution model from a Bayesian viewpoint”, Data Science Journal, 6: 107-113, (2007).
  • Abouammoh, A. M. and Alshingiti, A. M., “Reliability estimation of generalized inverted exponential distribution”, Journal of Statistical Computation and Simulation, 79(11): 1301-1315, (2009).
  • Oguntunde, P. E., Adejumo, A. and Balogun, O. S., “Statistical properties of the exponentiated generalized inverted exponential distribution”, Applied Mathematics, 4(2): 47-55, (2014).
  • Singh, S. K., Singh, U. and Kumar, M., “Estimation of parameters of generalized inverted exponential distribution for progressive Type-II censored sample with binomial removals”, Journal of Probability and Statistics, Doi:10.1155/2013/183652, (2013).
  • Oguntunde, P. E., Babatunde, O. S. and Ogunmola, A. O., “Theoretical analysis of the kumaraswamy-inverse exponential distribution”, International Journal of Statistics and Applications, 4(2): 113-116, (2014).
  • Oguntunde, P. and Adejumo, O., “The transmuted inverse exponential distribution”, International Journal of Advanced Statistics and Probability, 3(1): 1-7, (2014).
  • Oguntunde, P. E., “Generalısatıon of the Inverse Exponentıal Dıstrıbutıon: Statıstıcal Propertıes and Applıcatıons”, Phd. Thesis, Covenant University College of Science and Technology, Ota, Ogun State, 128-142 (2017).
  • Mahdavi, A. and Kundu, D., “A new method for generating distributions with an application to exponential distribution”, Communications in Statistics - Theory and Methods, 46(13): 6543-6557, (2017).
  • Lee, C., Famoye, F. and Alzaatreh, A. Y., “Methods for generating families of univariate continuous distributions in the recent decades”, Wiley Interdisciplinary Reviews: Computational Statistics, 5(3): 219-238, (2013).
  • Dey, S., Alzaatreh, A., Zhang, C. and Kumar, D., “A new extension of generalized exponential distribution with application to Ozone data”, Ozone: Science & Engineering, 39(4): 273-285, (2017).
  • Dey, S., Sharma, V. K. and Mesfioui, M., “A new extension of weibull distribution with application to lifetime data”, Annals of Data Science, 4(1): 31-61, (2017).
  • Isik, H., Turfan, D. and Ozel, G., “The double truncated dagum distribution with applications”, International Journal of Mathematics and Statistics, 18(2): 61-78, (2017).
  • Kenney, J. F., Mathematics of Statistics Part 1., Chapman & Hall, London, (1939).
  • Moors, J. J. A., “A quantile alternative for kurtosis”, The Statistician, 37(1): 25-32. (1988).
  • Shanker, R., Shukla, K. K. and Fesshaye, H., “On weighted lindley distribution and its applications to model lifetime data”, Jacobs Journal of Biostatistics, 1(1): 002, (2016).
  • Shanker, R., Shukla, K. K. and Mishra, A., “A three-parameter weighted lindley distribution and its applications to model survival time”, Statistics, 18(2): 291-310, (2017).
  • Singh, S. K., Singh, U., Yadav, A. and Viswkarma, P. K., “On the estimation of stress strength reliability parameter of inverted exponential distribution”, International Journal of Scientific World, 3(1): 98-112, (2015).
  • Sharma, V. K., Singh, S. K., Singh, U. and Agiwal, V., “The inverse lindley distribution: A stress-strength reliability model”, arXiv: 1405.6268, (2014).
  • Efron, B., “Logistic regression, survival analysis and the kaplan-meier curve”, Journal of the American Statistical Association, 83(402): 414-425, (1988).
Konular Fen
Dergi Bölümü Statistics
Yazarlar

Yazar: Ceren ÜNAL (Sorumlu Yazar)
Kurum: Hacettepe University
Ülke: Turkey


Yazar: Selen ÇAKMAKYAPAN
Kurum: İSTANBUL MEDENİYET ÜNİVERSİTESİ
Ülke: Turkey


Yazar: Gamze ÖZEL
Kurum: Hacettepe University
Ülke: Turkey


Bibtex @araştırma makalesi { gujs386993, journal = {Gazi University Journal of Science}, issn = {}, eissn = {2147-1762}, address = {Gazi Üniversitesi}, year = {2018}, volume = {31}, pages = {954 - 965}, doi = {}, title = {Alpha Power Inverted Exponential Distribution: Properties and Application}, key = {cite}, author = {ÇAKMAKYAPAN, Selen and ÖZEL, Gamze and ÜNAL, Ceren} }
APA ÜNAL, C , ÇAKMAKYAPAN, S , ÖZEL, G . (2018). Alpha Power Inverted Exponential Distribution: Properties and Application. Gazi University Journal of Science, 31 (3), 954-965. Retrieved from http://dergipark.gov.tr/gujs/issue/38948/386993
MLA ÜNAL, C , ÇAKMAKYAPAN, S , ÖZEL, G . "Alpha Power Inverted Exponential Distribution: Properties and Application". Gazi University Journal of Science 31 (2018): 954-965 <http://dergipark.gov.tr/gujs/issue/38948/386993>
Chicago ÜNAL, C , ÇAKMAKYAPAN, S , ÖZEL, G . "Alpha Power Inverted Exponential Distribution: Properties and Application". Gazi University Journal of Science 31 (2018): 954-965
RIS TY - JOUR T1 - Alpha Power Inverted Exponential Distribution: Properties and Application AU - Ceren ÜNAL , Selen ÇAKMAKYAPAN , Gamze ÖZEL Y1 - 2018 PY - 2018 N1 - DO - T2 - Gazi University Journal of Science JF - Journal JO - JOR SP - 954 EP - 965 VL - 31 IS - 3 SN - -2147-1762 M3 - UR - Y2 - 2018 ER -
EndNote %0 Gazi University Journal of Science Alpha Power Inverted Exponential Distribution: Properties and Application %A Ceren ÜNAL , Selen ÇAKMAKYAPAN , Gamze ÖZEL %T Alpha Power Inverted Exponential Distribution: Properties and Application %D 2018 %J Gazi University Journal of Science %P -2147-1762 %V 31 %N 3 %R %U
ISNAD ÜNAL, Ceren , ÇAKMAKYAPAN, Selen , ÖZEL, Gamze . "Alpha Power Inverted Exponential Distribution: Properties and Application". Gazi University Journal of Science 31 / 3 (Eylül 2018): 954-965.