Yıl 2018, Cilt 31, Sayı 4, Sayfalar 1093 - 1105 2018-12-01

Forced vibration analysis of warping considered curved composite beams resting on viscoelastic foundation

Umit Necmettin ARIBAS [1] , Merve ERMIS [2] , Akif KUTLU [3] , Nihal ERATLI [4] , Mehmet Hakkı OMURTAG [5]

27 32

The forced vibration analysis of warping considered curved composite Timoshenko beams resting on viscoelastic foundation is investigated via the mixed finite element method. Rocking is considered both for Winkler and Pasternak viscoelastic foundations. Two nodded curved element has 12 degrees of freedom. Problems are solved in frequency domain via Laplace transform and modified Durbin’s algorithm is used for back transformation to time domain. Warping considered average torsional rigidities of the composite cross-sections are calculated numerically by ANSYS and verified by the literature. After the verification of the algorithms, as benchmark examples, curved composite beams on rocking considered viscoelastic Pasternak foundation are solved.

Curved composite beam, Forced vibration, Finite element method, Torsional rigidity, Viscoelastic foundation
  • [10] Yamada, Y., Nakagiri, S., Takatsuka, K., “Elastic-plastic analysis of Saint-Venant torsion problem by a hybrid stress model”, International Journal for Numerical Methods in Engineering, 5(2):193-207, (1972).
  • [11] Noor, A.K., Andersen, C.M., “Mixed isoparametric elements for Saint-Venant torsion”, Computer Methods Applied Mechanics and Engineering, 6:195-218, (1975).
  • [12] Xiao, Q., Karihaloo, B., Li, Z., Williams, F., “An improved hybrid-stress element approach to torsion of shafts”, Computers & Structures, 71:535-563, (1999).
  • [13] Nouri, T., Gay, D., “Shear stresses in orthotropic composite beams”, International Journal of Engineering Science, 32:1647-1667, (1994).
  • [14] Sapountzakis, E.J., “Nonuniform torsion of multi-material composite bars by the boundary element method”, Computers & Structures, 79:2805-2816, (2001).
  • [15] Sapountzakis, E.J., Mokos, V.G., “Warping shear stresses in nonuniform torsion of composite bars by BEM”, Computer Methods in Applied Mechanics and Engineering, 192:4337-4353, (2003).
  • [16] Sapountzakis, E.J., Mokos, V.G., “Nonuniform torsion of bars variable cross section”, Computers & Structures, 82:703-715, (2004).
  • [17] Katsikadelis, J.T., Sapountzakis, E.J., “Torsion of composite bars by boundary element method”, Journal of the Engineering Mechanics Division, 111:1197-1210, (1985).
  • [18] Chou, S.I., Mohr, J.A., “Boundary integral method for torsion of composite shafts”, Res Mechanica: International Journal of Mechanical and Materials Engineering, 29:41-56, (1990).
  • [19] Dumir, P.C., Kumar, R., “Complex variable boundary element method for torsion of anisotropic bars”, Applied Mathematical Modelling, 17:80-88, (1993).
  • [1] Herrmann, L.R., “Elastic torsional analysis of irregular shapes”, Journal of the Engineering Mechanics Division, 91:11-19, (1965).
  • [20] Friedman, Z., Kosmatka, J.B., “Torsion and flexure of a prismatic isotropic beam using the boundary element method”, Computers & Structures, 74:479-494, (2000).
  • [21] Gaspari, D., Aristodemo, M., “Torsion and flexure analysis of orthotropic beams by a boundary element model”, Engineering Analysis with Boundary Elements, 29:850-858, (2005).
  • [22] Wang, C.T., “Applied Elasticity”, McGraw-Hill, (1953).
  • [23] Ely, J.F., Zienkiewicz, O.C., “Torsion of compound bars-a relaxation solution”, International Journal of Mechanical Sciences, 1:356-365, (1960).
  • [24] Darılmaz, K., Orakdöğen, E., Girgin, K., “Saint-Venant torsion of arbitrarily shaped orthotropic composite or FGM sections by a hybrid finite element approach”, Acta Mechanica, https://doi.org/10.1007/s00707-017-2067-1, (2017).
  • [25] Volterra, E., “Bending of a circular beam resting on an elastic foundation”, ASME Journal of Applied Mechanics, 19:1-4, (1952).
  • [26] Volterra, E., “Deflection of circular beams resting on elastic foundation obtained by the methods of harmonic analysis”, ASME Journal of Applied Mechanics, 20:227-232, (1953).
  • [27] Dasgupta, S., Sengupta, D., “Horizontally curved isoparametric beam element with or without elastic foundation including effect of shear deformation”, Computers & Structures, 29(6):967-973, (1988).
  • [28] Banan, M.R., Karami, G., Farshad, M., “Finite element analysis of curved beams on elastic foundation”, Computers & Structures, 32(1):45-53, (1989).
  • [29] Shenoi, R.A., Wang, W., “Flexural behaviour of a curved orthotropic beam on an elastic foundation”, The Journal of Strain Analysis for Engineering Design, 36(1):1-15, (2001).
  • [2] Krahula, J.L., Lauterbach, G.F., “A finite element solution for Saint-Venant torsion”, AIAA Journal, 7:2200-2203, (1969).
  • [30] Arici, M., Granata, M.F., “Generalized curved beam on elastic foundation solved by transfer matrix method”, Structural Engineering and Mechanics, 40(2):279-295, (2011).
  • [31] Çalım, F.F., Akkurt, F.G., “Static and free vibration analysis of straight and circular beams on elastic foundation”, Mechanics Research Communications, 38:89-94, (2011).
  • [32] Arici, M., Granata, M.F., Margiotta, P., “Hamiltonian structural analysis of curved beams with or without generalized two-parameter foundation”, Archive of Applied Mechanics, 83:1695-1714, (2013).
  • [33] Panayotounakos, D.E., Theocaris, P.S., “The dynamically loaded circular beam on an elastic foundation”, Journal of Applied Mechanics, 47:139-144, (1980).
  • [34] Wang, T.M., Brannen, W.F., “Natural frequencies for out-of-plane vibrations of curved beams on elastic foundations”, Journal of Sound and Vibration, 84(2):241-246, (1982).
  • [35] Issa, M.S., “Natural frequencies of continuous curved beams on Winkler-type foundation”, Journal of Sound and Vibration, 127(2):291-301, (1988).
  • [36] Issa, M.S., Nasr, M.E., Naiem, M.A., “Free vibrations of curved Timoshenko beams on Pasternak foundations”, International Journal of Solids and Structures, 26(11):1243-1252, (1990).
  • [37] Lee, B.K., Oh, S.J., Park, K.K., “Free vibrations of shear deformable circular curved beams resting on elastic foundations”, International Journal of Structural Stability and Dynamics, 2(1):77-97, (2002).
  • [38] Wu, X., Parker, R.G., “Vibration of rings on a general elastic foundation”, Journal of Sound and Vibration, 295:194–213, (2006).
  • [39] Kim, N., Fu, C.C., Kim, M.Y., “Dynamic stiffness matrix of non-symmetric thin-walled curved beam on Winkler and Pasternak type foundations”, Advances in Engineering Software, 38:158-171, (2007).
  • [3] Lamancusa, J.S., Saravanos, D.A., “The torsional analysis of bars with hollow square cross-sections”, Finite Element in Analysis and Design, 6:71-79, (1989).
  • [40] Malekzadeh, P., Haghighi, M.R.G., Atashi, M.M., “Out-of-plane free vibration analysis of functionally graded circular curved beams supported on elastic foundation”, International Journal of Applied Mechanics, 2(3):635-652, (2010).
  • [41] Celep, Z., “In-plane vibrations of circular rings on a tensionless foundation”, Journal of Sound and Vibration, 143(3):461-471, (1990).
  • [42] Kutlu, A., Ermis, M., Eratlı, N., Omurtag, M.H., “Forced vibration of a planar curved beam on Pasternak foundation, 19th International Conference on Structural and Construction Engineering, Istanbul, 2640-2644, (2017).
  • [43] Çalım, F.F., “Forced vibration of curved beams on two-parameter elastic foundation”, Applied Mathematical Modelling, 36:964-973, (2012).
  • [44] Çalım, F.F., “Dynamic response of curved Timoshenko beams resting on viscoelastic foundation”, Structural Engineering and Mechanics, 59(4):761-774, (2016).
  • [45] Eratlı, N., Argeso, H., Çalım. F.F., Temel. B., Omurtag. M.H., “Dynamic analysis of linear viscoelastic cylindrical and conical helicoidal rods using the mixed FEM” Journal of Sound and Vibration, 333(16): 3671-3690, (2014).
  • [46] Ermis, M., Eratlı, N., Argeso, H., Kutlu, A., Omurtag, M.H., “Parametric Analysis of Viscoelastic Hyperboloidal Helical Rod”, Advances in Structural Engineering, 19(9):1420-1434, (2016).
  • [47] Bhimaraddi, A., Chandrashekhara, K., “Some Observations on The Modelling of Laminated Composite Beams with General Lay-ups”, Composite Structures, 19: 371380, (1991).
  • [48] Yıldırım, V., “Governing Equations of Initially Twisted Elastic Space Rods Made of Laminated Composite Materials”, International Journal of Engineering Science, 37(8):1007-1035, (1999).
  • [49] Doğruoğlu, A.N., Omurtag, M.H., “Stability analysis of composite-plate foundation interaction by mixed FEM”, Journal of Engineering Mechanics, ASCE, 126(9):928-936, (2000).
  • [4] Li, Z., Ko, J.M., Ni, Y.Q., “Torsional rigidity of reinforced concrete bars with arbitrary sectional shape”, Finite Elements in Analysis and Design, 35:349-361, (2000).
  • [50] Orakdöğen, E., Küçükarslan, S., Sofiyev, A., Omurtag, M.H., “Finite element analysis of functionally graded plates for coupling effect of extension and bending”, Meccanica, 45(1):63-72, (2010).
  • [51] Omurtag, M.H., Aköz, A.Y., “Hyperbolic paraboloid shell analysis via mixed finite element formulation”, International Journal for Numerical Methods in Engineering, 37(18):3037-3056, (1994).
  • [52] Aköz, A.Y., Omurtag, M.H., Doğruoğlu, A.N., “The mixed finite element formulation for three - dimensional bars”, International Journal of Solids Structures, 28(2):225-234, (1991).
  • [53] Omurtag, M.H., Aköz, A.Y., “The mixed finite element solution of helical beams with variable cross-section under arbitrary loading”, Computers & Structures, 43(2):325-331, (1992).
  • [54] Arıbas, U., Kutlu, A., Omurtag, M.H., “Static analysis of moderately thick, composite, circular rods via mixed FEM”, Proceedings of the World Congress on Engineering 2016, WCE 2016, London, 2, (2016).
  • [55] Arıbas, U., Eratlı, N., Omurtag, M.H., “Free vibration analysis of moderately thick, sandwich, circular beams”, Proceedings of the World Congress on Engineering 2016, WCE 2016, London, 2, (2016).
  • [56] Ermis, M., Arıbas, U.N., Eratlı, N., Omurtag, M.H., “Static and free vibration analysis of composite straight beams on the Pasternak foundation”, 10th International Conference on Finite Differences, Finite Elements, Finite Volumes, Boundary Elements, Barcelona, 12:113-122, (2017).
  • [57] Arıbas, U.N., Yılmaz, M., Eratlı, N., Omurtag, M.H., “Static and free vibration analysis of planar curved composite beams on elastic foundation”, 8th International Conference on Theoretical and Applied Mechanics, Brasov, 2:35-42, (2017).
  • [58] Dubner, H., Abate, J., “Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transform”, Journal of the Association for Computing Machinery, 15(1):115-123, (1968).
  • [59] Durbin, F., “Numerical inversion of Laplace transforms: An efficient improvement to Dubner and Abate′s method”, Computer Journal, 17:371-376, (1974).
  • [5] Darılmaz, K., Orakdogen, E., Girgin, K., Küçükarslan, S., “Torsional rigidity of arbitrarily shaped composite sections by hybrid finite element approach”, Steel and Composite Structures, 7:241-251, (2007).
  • [60] Narayanan, G.V., “Numerical Operational Methods in Structural Dynamics”, Ph.D. Thesis, University of Minnesota, Minneapolis, America, (1979).
  • [6] Eratlı, N., Yılmaz, M., Darılmaz, K., Omurtag, M.H., “Dynamic analysis of helicoidal bars with non-circular cross-sections via mixed FEM”, Structural Engineering and Mechanics, 57:221-238, (2016).
  • [7] Zienkiewicz, O.C., Cheung, Y.K., “Finite elements in the solution of field problems”, The Engineer, 220:507-510, (1965).
  • [8] Moan, T., “Finite element stress field solution of the problem of Saint-Venant torsion”, International Journal for Numerical Methods in Engineering, 5:455-458, (1973).
  • [9] Valliappan, S., Pulmano, V.A., “Torsion of nonhomogeneous anisotropic bars”, Journal of the Structural Division, 100:286-295, (1974).
Birincil Dil en
Konular Mühendislik
Dergi Bölümü Civil Engineering
Yazarlar

Yazar: Umit Necmettin ARIBAS (Sorumlu Yazar)
Kurum: İSTANBUL TEKNİK ÜNİVERSİTESİ
Ülke: Turkey


Yazar: Merve ERMIS
Kurum: İSTANBUL TEKNİK ÜNİVERSİTESİ
Ülke: Turkey


Yazar: Akif KUTLU
Kurum: İSTANBUL TEKNİK ÜNİVERSİTESİ
Ülke: Turkey


Yazar: Nihal ERATLI
Kurum: İSTANBUL TEKNİK ÜNİVERSİTESİ
Ülke: Turkey


Yazar: Mehmet Hakkı OMURTAG
Kurum: İSTANBUL TEKNİK ÜNİVERSİTESİ
Ülke: Turkey


Bibtex @araştırma makalesi { gujs388317, journal = {Gazi University Journal of Science}, issn = {}, eissn = {2147-1762}, address = {Gazi Üniversitesi}, year = {2018}, volume = {31}, pages = {1093 - 1105}, doi = {}, title = {Forced vibration analysis of warping considered curved composite beams resting on viscoelastic foundation}, key = {cite}, author = {ARIBAS, Umit Necmettin and ERATLI, Nihal and ERMIS, Merve and OMURTAG, Mehmet Hakkı and KUTLU, Akif} }
APA ARIBAS, U , ERMIS, M , KUTLU, A , ERATLI, N , OMURTAG, M . (2018). Forced vibration analysis of warping considered curved composite beams resting on viscoelastic foundation. Gazi University Journal of Science, 31 (4), 1093-1105. Retrieved from http://dergipark.gov.tr/gujs/issue/40684/388317
MLA ARIBAS, U , ERMIS, M , KUTLU, A , ERATLI, N , OMURTAG, M . "Forced vibration analysis of warping considered curved composite beams resting on viscoelastic foundation". Gazi University Journal of Science 31 (2018): 1093-1105 <http://dergipark.gov.tr/gujs/issue/40684/388317>
Chicago ARIBAS, U , ERMIS, M , KUTLU, A , ERATLI, N , OMURTAG, M . "Forced vibration analysis of warping considered curved composite beams resting on viscoelastic foundation". Gazi University Journal of Science 31 (2018): 1093-1105
RIS TY - JOUR T1 - Forced vibration analysis of warping considered curved composite beams resting on viscoelastic foundation AU - Umit Necmettin ARIBAS , Merve ERMIS , Akif KUTLU , Nihal ERATLI , Mehmet Hakkı OMURTAG Y1 - 2018 PY - 2018 N1 - DO - T2 - Gazi University Journal of Science JF - Journal JO - JOR SP - 1093 EP - 1105 VL - 31 IS - 4 SN - -2147-1762 M3 - UR - Y2 - 2018 ER -
EndNote %0 Gazi University Journal of Science Forced vibration analysis of warping considered curved composite beams resting on viscoelastic foundation %A Umit Necmettin ARIBAS , Merve ERMIS , Akif KUTLU , Nihal ERATLI , Mehmet Hakkı OMURTAG %T Forced vibration analysis of warping considered curved composite beams resting on viscoelastic foundation %D 2018 %J Gazi University Journal of Science %P -2147-1762 %V 31 %N 4 %R %U
ISNAD ARIBAS, Umit Necmettin , ERMIS, Merve , KUTLU, Akif , ERATLI, Nihal , OMURTAG, Mehmet Hakkı . "Forced vibration analysis of warping considered curved composite beams resting on viscoelastic foundation". Gazi University Journal of Science 31 / 4 (Aralık 2018): 1093-1105.