Yıl 2018, Cilt 31, Sayı 4, Sayfalar 1213 - 1227 2018-12-01

The Application of Computational Fluid Dynamics (CFD) Method and Several Rheological Models of Blood Flow: A Review

Esmaeel FATAHIAN [1] , Naser KORDANI [2] , Hossein FATAHIAN [3]

17 18

Computational fluid dynamics (CFD) method can be applied for gaining insights to the most fluid processes and related phenomena. Applying CFD method in the investigation of physiological flows especially blood is one of the interesting topics for many researchers. Because of its significant effect on various human cardiovascular diseases and arterial diseases, extended knowledge of blood flow in physiological conditions is required. This review provided an overview of recent studies on the application of CFD method of blood flow inside the corkscrew artery, arterial stenoses, human patient-specific left ventricle and arteries affected by multiple aneurysms. Also, several rheological models for describing the blood rheology were discussed. Based on this review, it was concluded that the application of CFD method can help the medical practitioners in the patients’ treatment decision in the investigation of blood flow

 


Rheological models, Blood flow, Non-Newtonian fluid, Computational fluid dynamics
  • [1] Da silva, J. L., & Rao, M. A., “Rheological behavior of food gels”, Rheology of Fluid and Semisolid Foods, Springer US, 5, 339-401, (2007).
  • [2] Kordani, N., & Vanini, A. S., “Optimizing the ethanol content of shear thickening fluid/fabric composites under impact loading”, Journal of Mechanical Science and Technology, 28(2), 663-667, (2014).
  • [3] Brown, S., “Computational Fluid Dynamic Modeling of Aortic Blood Flow”, Doctoral dissertation, McMaster University, Canada, (2014).
  • [4] Rabby, M. G., Shupti, S. P., & Molla, M. M., “Pulsatile non-Newtonian laminar blood flows through arterial double stenoses”, Journal of Fluids, 55, 122-134, (2014).
  • [5] Yilmaz, F., & Gundogdu, M. Y., “A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions”, Korea-Australia Rheology Journal, 20(4), 197-211, 2008.
  • [6] Nezamidoost, S., Sadeghy, K., & Askari, V., “Pulsatile flow of thixotropic fluids through a partially-constricted tube”, Nihon Reoroji Gakkaishi, 41(2), 45-52, (2013).
  • [7] Baskurt, O. K., & Meiselman, H. J., “Blood rheology and hemodynamics”, In Seminars in thrombosis and hemostasis, Thieme Medical Publishers, 29(5), 435-450, (2003).
  • [8] Doost, S. N., Zhong, L., Su, B., & Morsi, Y. S., “The numerical analysis of non-Newtonian blood flow in human patient-specific left ventricle”, Computer methods and programs in biomedicine, 127(3), 232-247, (2016).
  • [9] Vlachopoulos, C., O'Rourke, M., & Nichols, W. W., “McDonald's blood flow in arteries: theoretical, experimental and clinical principles”, CRC press, 15-32, (2011).
  • [10] Lantz, J., Gardhagen, R., & Karlsson, M., “Quantifying turbulent wall shear stress in a subject specific human aorta using large eddy simulation”, Medical Engineering and Physics, 34(8), 1139-1148, (2012).
  • [11] Chen, J., & Lu, X. Y., “Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch”, Journal of biomechanics, 39(5), 818-832, (2006).
  • [12] Siddiqui, S. U., Verma, N. K., Mishra, S., & Gupta, R. S., “Mathematical modelling of pulsatile flow of Casson’s fluid in arterial stenosis”, Applied Mathematics and Computation, 210(1), 1-10, (2009).
  • [13] Sultanov, R. A., & Guster, D., “Full dimensional computer simulations to study pulsatile blood flow in vessels, aortic arch and bifurcated veins: Investigation of blood viscosity and turbulent effects”, In Engineering in Medicine and Biology Society, Annual International Conference of the IEEE, 4704-4710, (2009).
  • [14] Ternik, P., & Marn, J., “Numerical study of blood flow in stenotic artery”, Applied Rheology, 19(1), 130-145, (2009).
  • [15] Pedrizzetti, G., and Perktold K., “Cardiovascular fluid mechanics”, New York-Springer, 45-63, (2003).
  • [16] Su, C. M., Lee, D., Tran-Son-Tay, R., & Shyy, W., “Fluid flow structure in arterial bypass anastomosis”, Journal of biomechanical engineering, 127(4), 611-618, (2005).
  • [17] Maurits, N. M., Loots, G. E., & Veldman, A. E. P., “The influence of vessel walls elasticity and peripheral resistance on the carotid artery flow wave form: a CFD model compared to in vivo ultrasound measurements”, Journal of biomechanics, 40(2), 427-436, (2007).
  • [18] De Santis, G., Mortier, P., De Beule, M., Segers, P., Verdonck, P., & Verhegghe, B., “Patient-specific computational fluid dynamics: structured mesh generation from coronary angiography”, Medical & biological engineering & computing, 48(4), 371-380, (2010).
  • [19] Leuprecht, A., Kozerke, S., Boesiger, P., & Perktold, K., “Blood flow in the human ascending aorta: a combined MRI and CFD study”, Journal of engineering mathematics, 47(3-4), 387-404, (2003).
  • [20] Kaazempur-Mofrad, M. R., Isasi, A. G., Younis, H. F., Chan, R. C., Hinton, D. P., Sukhova, G., Kamm, R. D., “Characterization of the atherosclerotic carotid bifurcation using MRI, finite element modeling, and histology”, Annals of biomedical engineering, 32(7), 932-946, (2004).
  • [21] Schumann, C., M. Neugebauer, R. Bade, B. Preim, and Peitgen, H., “Implicit vessel surface reconstruction for visualization and CFD simulation”, International Journal of Computer Assisted Radiology and Surgery, 2(5), 275-286, (2008).
  • [22] Sousa, L. C., C. F. Castro, and Antonio, C., “Blood flow simulation and applications”, Technologies for medical sciences, 3, 67-86, (2012).
  • [23] Chen, J., X. Y. Lu, and Wang W., “Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses”, Journal of Biomechanics, 39(11), 1983-1995, (2006).
  • [24] Molla, M. Mamun, and Paul M. C., “LES of non-Newtonian physiological blood flow in a model of arterial stenosis”, Medical engineering & physics, 34(8), 1079-1087, (2012).
  • [25] Fan, Y., W. Jiang, Y. Zou, J. Li, J. Chen, and Deng X., “Numerical simulation of pulsatile non-Newtonian flow in the carotid artery bifurcation”, Acta Mechanica Sinica, 25(2), 249-255, (2009).
  • [26] Johnston, B. M., P. R. Johnston, S. Corney, and Kilpatrick D., “Non-Newtonian blood flow in human right coronary arteries: transient simulations”, Journal of biomechanics, 39(6), 1116-1128, (2006).
  • [27] Kim, Y. H., P. J. VandeVord, and Lee, J. S., “Multiphase non‐Newtonian effects on pulsatile hemodynamics in a coronary artery”, International journal for numerical methods in fluids, 58(7), 803-825, (2008).
  • [28] Vajravelu, K., S. Sreenadh, P. Devaki, and Prasad, K., “Mathematical model for a Herschel-Bulkley fluid flow in an elastic tube”, Open Physics, 9(5), 1357-1365, (2011).
  • [29] Pontrelli, G., “Blood flow through a circular pipe with an impulsive pressure gradient”, Mathematical Models and Methods in Applied Sciences, 10(2), 187-202, (2000).
  • [30] Das, B., G. Enden, and Popel A. S., “Stratified multiphase model for blood flow in a venular bifurcation”, Annals of biomedical engineering, 25(1), 135-153, (1997).
  • [31] Hundertmark-Zaušková, A., and Lukáčová-Medvid’ová M., “Numerical study of shear-dependent non-Newtonian fluids in compliant vessels”, Computers & Mathematics with Applications, 60(3), 572-590, (2010).
  • [32] Lou, Z., and Yang W. J., “A computer simulation of the non-Newtonian blood flow at the aortic bifurcation”, Journal of biomechanics, 26(1), 37-49, (1993).
  • [33] Zueco, J., and Bég O. A., “Network numerical simulation applied to pulsatile non-Newtonian flow through a channel with couple stress and wall mass flux effects”, International Journal of Applied Mathematics and Mechanics, 5(2), 1-16, (2009).
  • [34] Marcinkowska-Gapińska, A., J. Gapinski, W. Elikowski, F. Jaroszyk, and Kubisz L., “Comparison of three rheological models of shear flow behavior studied on blood samples from post-infarction patients”, Medical & biological engineering & computing, 45(9), 837-844, (2007).
  • [35] Bodnár, T., A. Sequeira, and Prosi. M., “On the shear-thinning and viscoelastic effects of blood flow under various flow rates”, Applied Mathematics and Computation, 217(11), 5055-5067, (2011).
  • [36] Augier, F., O. Masbernat, and Guiraud, P., “Slip velocity and drag law in a liquid‐liquid homogeneous dispersed flow”, AIChE journal, 49(9), 2300-2316, (2003).
  • [37] Bessonov, N., A. Sequeira, S. Simakov, Y. Vassilevskii, and Volpert, V., “Methods of blood flow modelling”, Mathematical modelling of natural phenomena, 11(1), 1-25, (2016).
  • [38] Shibeshi, S. S., and Collins W. E., “The rheology of blood flow in a branched arterial system”, Applied rheology (Lappersdorf, Germany: Online), 15(6), 398-408, (2005).
  • [39] Guerciotti, B., & Vergara, C., “Computational Comparison Between Newtonian and Non-Newtonian Blood Rheologies in Stenotic Vessels”, In Biomedical Technology, Springer-Cham, 169-183, (2018).
  • [40] Sharifi, A., and Moghadam M. C., “CFD simulation of blood flow inside the corkscrew collaterals of the Buerger’s disease”, BioImpacts, 6(1), 41-53, (2016).
  • [41] Manimaran, R., “CFD simulation of non-Newtonian fluid flow in arterial stenoses with surface irregularities”, World Academy of Science, Engineering and Technology, 73(5), 804-809, (2011).
  • [42] Adib, M. A. H. M., & Hasni, N. H. M., “Modeling of Blood Flow Velocity into the Main Artery via Left Ventricle of Heart during Steady Condition”, World Academy of Science, Engineering and Technology, International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering, 6(4), 97-101, (2012).
  • [43] Fujii, Y., J. Soga, S. Nakamura, T. Hidaka, T. Hata, N. Idei, Fujimura, N., “Classification of Corkscrew Collaterals in Thromboangiitis Obliterans (Buerger's Disease)”, Circulation Journal, 74(8), 1684-1688, (2010).
  • [44] Van de Vosse, F. N., A. A. Van Steenhoven, A. Segal, and Janssen J. D., “A finite element analysis of the steady laminar entrance flow in a 90 curved tube”, International journal for numerical methods in fluids, 9(3), 275-287, (1989).
  • [45] Kenji, T., K. Schjodt, A. Puntel, N. Kostov, and Tezduyar T. E., “Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent”, Computational Mechanics, 50(6), 675-686, (2012).
  • [46] Back, L. H., Y. I. Cho, D. W. Crawford, and Cuffel R. F., “Effect of mild atherosclerosis on flow resistance in a coronary artery casting of man”, Journal of biomechanical engineering, 106(1), 48-53, (1984).
  • [47] Ballyk, P. D., D. A. Steinman, and Ethier C. R., “Simulation of non-Newtonian blood flow in an end-to-side anastomosis”, Biorheology, 31(5), 565-586, (1994).
  • [48] Berger, S. A., and Jou L., “Flows in stenotic vessels”, Annual Review of Fluid Mechanics, 32(1), 347-382, (2000).
  • [49] Berthier, B., R. Bouzerar, and Legallais C., “Blood flow patterns in an anatomically realistic coronary vessel: influence of three different reconstruction methods”, Journal of biomechanics, 35(10), 1347-1356, (2002).
  • [50] Corney, S., P. R. Johnston, and Kilpatrick D., “Construction of realistic branched, three-dimensional arteries suitable for computational modelling of flow”, Medical and Biological Engineering and Computing 42(5), 660-668, 2004.
  • [51] Feldman, C. L., O. J. Ilegbusi, Z. Hu, R. Nesto, S. Waxman, and Stone, P. H., “Determination of in vivo velocity and endothelial shear stress patterns with phasic flow in human coronary arteries: a methodology to predict progression of coronary atherosclerosis”, American heart journal, 143(6), 931-939, (2002).
  • [52] Giddens, D. P., Zarins, C. K., & Glagov, S., “Response of arteries to near-wall fluid dynamic behavior”, Applied Mechanics Reviews, 43(5), 98-102, (1990).
  • [53] Chnafa, C., S. Mendez, and Nicoud, F., “Image-based large-eddy simulation in a realistic left heart”, Computers & Fluids, 94(4), 173-187, (2014).
  • [54] Khalafvand, S. S., Zhong, L., & Ng, E. Y. K., “Three‐dimensional CFD/MRI modeling reveals that ventricular surgical restoration improves ventricular function by modifying intraventricular blood flow”, International journal for numerical methods in biomedical engineering, 30(10), 1044-1056, (2014).
  • [55] Nguyen, V. T., Wibowo, S. N., Leow, Y. A., Nguyen, H. H., Liang, Z., & Leo, H. L., “A patient-specific computational fluid dynamic model for hemodynamic analysis of left ventricle diastolic dysfunctions”, Cardiovascular engineering and technology, 6(4), 412-429, (2015).
  • [56] Schenkel, T., Malve, M., Reik, M., Markl, M., Jung, B., & Oertel, H., “MRI-based CFD analysis of flow in a human left ventricle: methodology and application to a healthy heart”, Annals of biomedical engineering, 37(3), 503-515, (2009).
  • [57] Krittian, S., Janoske, U., Oertel, H., & Böhlke, T., “Partitioned fluid–solid coupling for cardiovascular blood flow”, Annals of biomedical engineering, 38(4), 1426-1441, (2010).
  • [58] Bavo, A. M., Pouch, A. M., Degroote, J., Vierendeels, J., Gorman, J. H., Gorman, R. C., & Segers, P., “Patient-specific CFD models for intraventricular flow analysis from 3D ultrasound imaging: Comparison of three clinical cases”, Journal of biomechanics, 50(1), 144-150, (2017).
  • [59] Larsson, D., Spühler, J. H., Petersson, S., Nordenfur, T., Colarieti-Tosti, M., Hoffman, J., ... & Larsson, M., “Patient-specific left ventricular flow simulations from transthoracic echocardiography: robustness evaluation and validation against Ultrasound Doppler and Magnetic Resonance Imaging”, IEEE transactions on medical imaging, 36(11), 2261-2275, (2017).
  • [60] Hassan, T., Timofeev, E. V., Saito, T., Shimizu, H., Ezura, M., Tominaga, T., ... & Takayama, K., “Computational replicas: anatomic reconstructions of cerebral vessels as volume numerical grids at three-dimensional angiography”, American Journal of Neuroradiology, 25(8), 1356-1365, (2004).
  • [61] Hassan, T., Timofeev, E. V., Saito, T., Shimizu, H., Ezura, M., Matsumoto, Y., ... & Takahashi, A., “A proposed parent vessel geometry—based categorization of saccular intracranial aneurysms: computational flow dynamics analysis of the risk factors for lesion rupture”, Journal of neurosurgery, 103(4), 662-680, (2005).
  • [62] Wille, S. O., “Finite element simulations of the pulsatile blood flow patterns in arterial abnormalities”, Finite Elements in Biomechanics, John Wiley & Sons, 25-40, (1982).
  • [63] Perktold, K., “On the paths of fluid particles in an axisymmetrical aneurysm”, Journal of biomechanics, 20(3), 311-317, (1987).
  • [64] Kumar, B. R., & Naidu, K. B., “Hemodynamics in aneurysm”, Computers and biomedical research, 29(2), 119-139, (1996).
  • [65] Bai, H. G., Naidu, K. B., & Kumar, G. V., “Computer simulation of blood flow in arteries affected by multiple aneurysm”, Indian Journal of Computer Science and Engineering (IJCSE), 3(6), 807-811, (2013).
  • [66] Byun, H. S., & Rhee, K., “CFD modeling of blood flow following coil embolization of aneurysms”, Medical Engineering and Physics, 26(9), 755-761, (2004).
  • [67] Castro, M. A., Putman, C. M., & Cebral, J. R., “Patient-specific computational modeling of cerebral aneurysms with multiple avenues of flow from 3D rotational angiography images”, Academic radiology, 13(7), 811-821, (2006).
  • [68] Lott, D. A., Siegel, M., Chaudhry, H. R., & Prestigiacomo, C. J., “Computational fluid dynamic simulation to assess flow characteristics of an in vitro aneurysm model”, Journal of neurointerventional surgery, 4, 55-68, (2009).
  • [69] Ishikawa, T., Guimaraes, L. F., Oshima, S., & Yamane, R., “Effect of non-Newtonian property of blood on flow through a stenosed tube”, Fluid dynamics research, 22(5), 251-264, (1998).
  • [70] Middleman, S., “flow of high polymers; continuum and molecular rheology”, Interscience, 747-748, (1968).
  • [71] Munson, B. R., Okiishi, T. H., Rothmayer, A. P., & Huebsch, W. W., “Fundamentals of fluid mechanics”, John Wiley & Sons, 55-59, (2014).
  • [72] Bird, R. B., Armstrong, R. C., & Hassager, O., “Dynamics of polymeric liquids”, Fluid mechanics, 1, 35-54, (1987).
  • [73] Baharvandi, H. R., Saeedi Heydari, M., Kordani, N., Alebooyeh, M., Alizadeh, M., & Khaksari, P., “Characterization of the rheological and mechanical properties of shear thickening fluid-coated Twaron® composite”, The Journal of the Textile Institute, 108(3), 397-407, (2017).
  • [74] Boyd, J., Buick, J. M., & Green, S., “Comparison of Newtonian and non-Newtonian oscillatory flows using the lattice Boltzmann method”, In World Congress on Medical Physics and Biomedical Engineering, Springer-Berlin, Heidelberg, 3395-3399, (2007).
  • [75] Misra, J. C., & Maiti, S., “Peristaltic pumping of blood through small vessels of varying cross-section”, Journal of Applied Mechanics, 79(6), 55-69, (2012).
  • [76] Huang, C., Chai, Z., & Shi, B., “Non-Newtonian effect on hemodynamic characteristics of blood flow in stented cerebral aneurysm”, Communications in Computational Physics, 13(3), 916-928, (2013).
  • [77] Fu, S. C., So, R. M. C., & Leung, W. W. F., “A lattice Boltzmann and immersed boundary scheme for model blood flow in constricted pipes: Part 2-Pulsatile flow”, Communications in Computational Physics, 14(1), 153-173, (2013).
  • [78] Čanić, S., Hartley, C. J., Rosenstrauch, D., Tambača, J., Guidoboni, G., & Mikelić, A., “Blood flow in compliant arteries: an effective viscoelastic reduced model, numerics, and experimental validation”, Annals of Biomedical Engineering, 34(4), 575-592, (2006).
  • [79] Pontrelli, G., “Pulsatile blood flow in a pipe”, Computers & fluids, 27(3), 367-380, (1998).
  • [80] Jonášová, A., & Vimmr, J., “Numerical simulation of non‐Newtonian blood flow in bypass models”, PAMM, 8(1), 10179-10180, (2008).
  • [81] Pontrelli, G., “Blood flow through a circular pipe with an impulsive pressure gradient”, Mathematical Models and Methods in Applied Sciences, 10(02), 187-202, (2000).
  • [82] Boyd, J., Buick, J. M., & Green, S., “Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models in steady and oscillatory flows using the lattice Boltzmann method”, Physics of Fluids, 19(9), 160-179, (2007).[83] Sankar, D. S., & Hemalatha, K., “Pulsatile flow of Herschel–Bulkley fluid through stenosed arteries—a mathematical model”, International Journal of Non-Linear Mechanics, 41(8), 979-990, (2006).
  • [84] Sankar, D. S., & Lee, U., “Two-fluid Herschel-Bulkley model for blood flow in catheterized arteries”, Journal of Mechanical science and technology, 22(5), 1008-1022, (2008).
Birincil Dil en
Konular Mühendislik
Dergi Bölümü Mechanical Engineering
Yazarlar

Yazar: Esmaeel FATAHIAN (Sorumlu Yazar)
Kurum: Young Researchers and Elite Club, Nour Branch, Islamic Azad University, Nour, Iran
Ülke: Iran


Yazar: Naser KORDANI
Kurum: Department of Mechanical Engineering, University of Mazandaran, Mazandaran, Iran
Ülke: Iran


Yazar: Hossein FATAHIAN
Kurum: Young Researchers and Elite Club, Nour Branch, Islamic Azad University, Nour, Iran
Ülke: Iran


Bibtex @derleme { gujs434692, journal = {Gazi University Journal of Science}, issn = {}, eissn = {2147-1762}, address = {Gazi Üniversitesi}, year = {2018}, volume = {31}, pages = {1213 - 1227}, doi = {}, title = {The Application of Computational Fluid Dynamics (CFD) Method and Several Rheological Models of Blood Flow: A Review}, key = {cite}, author = {KORDANI, Naser and FATAHIAN, Hossein and FATAHIAN, Esmaeel} }
APA FATAHIAN, E , KORDANI, N , FATAHIAN, H . (2018). The Application of Computational Fluid Dynamics (CFD) Method and Several Rheological Models of Blood Flow: A Review. Gazi University Journal of Science, 31 (4), 1213-1227. Retrieved from http://dergipark.gov.tr/gujs/issue/40684/434692
MLA FATAHIAN, E , KORDANI, N , FATAHIAN, H . "The Application of Computational Fluid Dynamics (CFD) Method and Several Rheological Models of Blood Flow: A Review". Gazi University Journal of Science 31 (2018): 1213-1227 <http://dergipark.gov.tr/gujs/issue/40684/434692>
Chicago FATAHIAN, E , KORDANI, N , FATAHIAN, H . "The Application of Computational Fluid Dynamics (CFD) Method and Several Rheological Models of Blood Flow: A Review". Gazi University Journal of Science 31 (2018): 1213-1227
RIS TY - JOUR T1 - The Application of Computational Fluid Dynamics (CFD) Method and Several Rheological Models of Blood Flow: A Review AU - Esmaeel FATAHIAN , Naser KORDANI , Hossein FATAHIAN Y1 - 2018 PY - 2018 N1 - DO - T2 - Gazi University Journal of Science JF - Journal JO - JOR SP - 1213 EP - 1227 VL - 31 IS - 4 SN - -2147-1762 M3 - UR - Y2 - 2018 ER -
EndNote %0 Gazi University Journal of Science The Application of Computational Fluid Dynamics (CFD) Method and Several Rheological Models of Blood Flow: A Review %A Esmaeel FATAHIAN , Naser KORDANI , Hossein FATAHIAN %T The Application of Computational Fluid Dynamics (CFD) Method and Several Rheological Models of Blood Flow: A Review %D 2018 %J Gazi University Journal of Science %P -2147-1762 %V 31 %N 4 %R %U
ISNAD FATAHIAN, Esmaeel , KORDANI, Naser , FATAHIAN, Hossein . "The Application of Computational Fluid Dynamics (CFD) Method and Several Rheological Models of Blood Flow: A Review". Gazi University Journal of Science 31 / 4 (Aralık 2018): 1213-1227.