Yıl 2018, Cilt 47, Sayı 5, Sayfalar 1196 - 1205 2018-10-16

Hyers-Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses

Akbar Zada [1] , Syed Omar Shah [2]

14 18

This paper proves the Hyers-Ulam stability and Hyers-Ulam-Rassias stability of first-order non-linear delay differential equations with fractional integrable impulses. Our approach uses abstract Grönwall lemma together with integral inequality of Grönwall type for piecewise continuous
functions
Hyers-Ulam stability, Hyers-Ulam-Rassias stability, fractional integrable impulses, Integral inequality of Grönwall type for piecewise continuous functions
  • Bainov, D. D. and Dishliev, A., Population dynamics control in regard to minimizing the time necessary for the regeneration of a biomass taken away from the population, Comp. Rend. Bulg. Scie. 42(6), 29-32, 1989.
  • Bainov, D. D. and Simenov, P. S., Systems with impulse effect stability theory and applica- tions, Ellis Horwood Limited, Chichester 1989.
  • Brzdek, J. and Eghbali, N., On approximate solutions of some delayed fractional differential equations, Appl. Math. Lett. 54, 31-35, 2016.
  • Dishliev, A. and Bainov, D. D., Dependence upon initial conditions and parameters of solutions of impulsive differential equations with variable structure, Int. J. Theor. Phys. 29(6), 655-676, 1990.
  • Gowrisankar, M., Mohankumar, P. and Vinodkumar, A., Stability results of random im- pulsive semilinear differential equations, Acta Math. Sci. 34(4), 1055-1071, 2014.
  • Huang, J., Alqifiary, Q. H. and Li, Y., Superstability of differential equations with boundary conditions, Elec. J. Diff. Eq. 2014(215), 1-8, 2014.
  • Huang, J., Jung, S.-M. and Li, Y., On the Hyers-Ulam stability of non-linear differential equations, Bull. Korean Math. Soc. 52(2), 685-697, 2015.
  • Huang, J. and Li, Y., Hyers-Ulam stability of linear functional differential equations, J. Math. Anal. Appl. 426, 1192-1200, 2015.
  • Huang, J. and Li, Y., Hyers-Ulam stability of delay differential equations of first order, Math. Nachr. 289(1), 60-66, 2016.
  • Hyers, D. H., On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27(4), 222-224, 1941.
  • Jung, S.-M., Hyers-Ulam stability of linear differential equations of first order. III, J. Math. Anal. Appl. 311, 139-146, 2005.
  • Jung, S.-M., Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, Springer Optim. Appl., Springer, NewYork 48, 2011.
  • Li, Y. and Shen, Y., Hyers-Ulam stability of nonhomogeneous linear differential equations of second order, Internat. J. Math. Math. Sci. 2009.
  • Li, Y. and Shen, Y., Hyers-Ulam stability of linear differential equations of second order, Appl. Math. Lett. 23, 306-309, 2010.
  • Li, T. and Zada, A., Connections between Hyers-Ulam stability and uniform exponential stability of discrete evolution families of bounded linear operators over Banach spaces, Adv. Difference Equ. 153, 2016.
  • Li, T., Zada, A. and Faisal, S., Hyers-Ulam stability of nth order linear differential equa- tions, J. Nonlinear Sci. Appl. 9, 2070-2075, 2016.
  • Liao, Y. and Wang, J., A note on stability of impulsive differential equations, Bound. Val. Prob. 67, 2014.
  • Lupulescu, V. and Zada, A., Linear impulsive dynamic systems on time scales, Electron. J. Qual. Theory Diff. Equ. 11, 1-30, 2010.
  • Miura, T., Miyajima, S. and Takahasi, S. E., A characterization of Hyers-Ulam stability of first order linear differential operators, J. Math. Anal. Appl. 286, 136-146, 2003.
  • Nenov, S., Impulsive controllability and optimization problems in population dynamics, Nonl. Anal. 36, 881-890, 1999.
  • Obloza, M., Hyers stability of the linear differential equation, Rocznik Nauk.-Dydakt. Prace Mat. 259-270, 1993.
  • Obloza, M., Connections between Hyers and Lyapunov stability of the ordinary differential equations, Rocznik Nauk.-Dydakt. Prace Mat. 14, 141-146, 1997.
  • Parthasarathy, C., Existence and Hyers-Ulam Stability of nonlinear impulsive differential equations with nonlocal conditions, Elect. Jour. Math. Ana. and Appl. 4(1), 106-117, 2016.
  • Popa, D. and Rasa, I., Hyers-Ulam stability of the linear differential operator with noncon- stant coefficients, Appl. Math. Comp. 219, 1562-1568, 2012.
  • Rassias, T. M., On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72, 297-300, 1978.
  • Rezaei, H., Jung, S. -M. and Rassias, T. M., Laplace transform and Hyers-Ulam stability of linear differential equations, J. Math. Anal. Appl. 403, 244-251, 2013.
  • Rus, I. A., Gronwall lemmas: ten open problems, Sci. Math. Jpn. 70, 221-228, 2009.
  • Samoilenko, A. M. and Perestyuk, N. A., Stability of solutions of differential equations with impulse effect, Differ. Equ. 13, 1981-1992, 1977.
  • Shah, R. and Zada, A., A fixed point approach to the stability of a nonlinear volterra integrodifferential equations with delay, Hacet. J. Math. Stat. 2017, 47 (3), 615-623, 2018.
  • Tang, S., Zada, A., Faisal, S., El-Sheikh, M. M. A. and Li, T., Stability of higher-order nonlinear impulsive differential equations, J. Nonlinear Sci. Appl. 9, 4713-4721, 2016.
  • Ulam, S. M., A collection of the mathematical problems, Interscience, New York, 1960.
  • Wang, J., Feckan, M. and Zhou, Y., Ulam's type stability of impulsive ordinary differential equations, J. Math. Anal. Appl. 395, 258-264, 2012.
  • Wang, J., Feckan, M. and Zhou, Y., On the stability of first order impulsive evolution equations, Opuscula Math. 34, 639-657, 2014.
  • Wang, C. and Xu, T. Z., Hyers-Ulam stability of fractional linear differential equations involving Caputo fractional derivatives, Appl. Math. 60(4), 383-393, 2015.
  • Wang, J. and Zhang, Y., A class of nonlinear differential equations with fractional integrable impulses, Com. Nonl. Sci. Num. Sim. 19, 3001-3010, 2014.
  • Xu, B. and Brzdek, J., Hyers-Ulam stability of a system of first order linear recurrences with constant coefficients, Discrete Dyn. Nat. Soc. 5 pages, 2015.
  • Xu, B., Brzdek, J. and Zhang, W., Fixed point results and the Hyers-Ulam stability of linear equations of higher orders, Pacific J. Math. 273(2), 2015, 483-498.
  • Zada, A., Ali, W. and Farina, S., Hyers-Ulam stability of nonlinear differential equations with fractional integrable impulses, Math. Methods Appl. Sci., 40, 5502-5514, 2017.
  • Zada, A., Faisal, S. and Li, Y., On the Hyers-Ulam stability of first-order impulsive delay differential equations, J. Funct. Spaces , 6 pages, 2016.
  • Zada, A., Faisal, S. and Li, Y., Hyers-Ulam-Rassias stability of non-linear delay differential equations, J. Nonlinear Sci. Appl. 10, 504-510, 2017.
  • Zada, A., Khan, F. U., Riaz, U. and Li, T., Hyers-Ulam stability of linear summation equations, Punjab U. J. Math. 49(1), 19-24, 2017.
  • Zada, A., Shah, O. and Shah, R., Hyers-Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problems, Appl. Math. Comput. 271, 512-518, 2015.
Birincil Dil en
Konular Matematik
Dergi Bölümü Matematik
Yazarlar

Yazar: Akbar Zada
Kurum: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PESHAWAR
Ülke: Pakistan


Yazar: Syed Omar Shah (Sorumlu Yazar)
Kurum: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PESHAWAR
Ülke: Pakistan


Bibtex @araştırma makalesi { hujms471121, journal = {Hacettepe Journal of Mathematics and Statistics}, issn = {2651-477X}, eissn = {2651-477X}, address = {Hacettepe Üniversitesi}, year = {2018}, volume = {47}, pages = {1196 - 1205}, doi = {}, title = {Hyers-Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses}, key = {cite}, author = {Shah, Syed Omar and Zada, Akbar} }
APA Zada, A , Shah, S . (2018). Hyers-Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses. Hacettepe Journal of Mathematics and Statistics, 47 (5), 1196-1205. Retrieved from http://dergipark.gov.tr/hujms/issue/39860/471121
MLA Zada, A , Shah, S . "Hyers-Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses". Hacettepe Journal of Mathematics and Statistics 47 (2018): 1196-1205 <http://dergipark.gov.tr/hujms/issue/39860/471121>
Chicago Zada, A , Shah, S . "Hyers-Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses". Hacettepe Journal of Mathematics and Statistics 47 (2018): 1196-1205
RIS TY - JOUR T1 - Hyers-Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses AU - Akbar Zada , Syed Omar Shah Y1 - 2018 PY - 2018 N1 - DO - T2 - Hacettepe Journal of Mathematics and Statistics JF - Journal JO - JOR SP - 1196 EP - 1205 VL - 47 IS - 5 SN - 2651-477X-2651-477X M3 - UR - Y2 - 2017 ER -
EndNote %0 Hacettepe Journal of Mathematics and Statistics Hyers-Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses %A Akbar Zada , Syed Omar Shah %T Hyers-Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses %D 2018 %J Hacettepe Journal of Mathematics and Statistics %P 2651-477X-2651-477X %V 47 %N 5 %R %U
ISNAD Zada, Akbar , Shah, Syed Omar . "Hyers-Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses". Hacettepe Journal of Mathematics and Statistics 47 / 5 (Ekim 2018): 1196-1205.