Cilt 1, Sayı 1, Sayfalar 5 - 10 2017-12-15

Investigation of hydrogen production cost by geothermal energy

Ceyhun Yilmaz [1] , Mehmet Kanoglu [2]

20 11

Geothermal energy has a significant potential on hydrogen economy where it can contribute sustainable production of hydrogen by renewable energy sources. In this paper, using geothermal electricity in hydrogen production by electrolysis is investigated. The cost of producing one kg of hydrogen by electrolysis as functions of temperature and mass flow rate of geothermal fluid for steam and binary cycles is studied. The analysis is based on an economic model of geothermal power production. The results show that the cost of hydrogen is inversely proportional to both the geothermal resource temperature and mass flow rate. 

Geothermal energy,Hydrogen production,Hydrogen Economy,Water electrolysis
  • 1. Barbier E. Nature and technology of geothermal energy: a review. Renewable and Sustainable Energy Reviews-An International Journal 1997;1(2):1-69.
  • 2. Ozgener L, Hepbasli A, Dincer I. Parametric study of the effect of dead state on energy and exergy efficiencies of geothermal district heating systems. Heat Transfer Engineering 2007;28(4):357-364.
  • 3. Scott DS. Smelling Land: The Hydrogen Defense Against Climate Catastrophe. Canadian Hydrogen Association, 2007, www.h2.ca.
  • 4. Syed MT, Sherif SA, Veziroglu TN, Sheffield JW. An economic analysis of three hydrogen liquefaction systems. Int. J. Hydrogen Energy 1998;23(7):565-576.
  • 5. Hand TW. Hydrogen production using geothermal energy, Theses and dissertations. Utah State Univ. 2008.
  • 6. http://www.hpath.org
  • 7. Honnery D. Moriarty P. Estimating global hydrogen production from wind. International Journal of Hydrogen Energy, In Press, 2008.
  • 8. Naterer GF, Fowler M, Cotton J, Gabriel K. Synergistic roles of off-peak electrolysis and thermochemical production of hydrogen from nuclear energy in Canada. International Journal of Hydrogen Energy 2008;33(23):6849-6857.
  • 9. Jonsson VK, Gunnarsson RL, Arnason B, Sigfusson TI. The feasibility of using geothermal energy in hydrogen production. Geothermics 1992;21:673-681.
  • 10. Sigurvinsson J, Mansilla C, Lovera P, Werkoff F. Can high temperature steam electrolysis function with geothermal heat? International Journal of Hydrogen Energy 2007;32(9):1174-1182.
  • 11. Mansilla C, Sigurvinsson J, Bontemps A, Maréchal A, Werkoff F. Heat management for hydrogen production by high temperature steam electrolysis. Energy 2007;32(4):423-430.
  • 12. Ingason HT, Ingolfsson HP, Jensson P. Optimizing site selection for hydrogen production in Iceland. International Journal of Hydrogen Energy 2008;33(14):3632-3643.
  • 13. Kanoglu M, Dincer I, Rosen MA. Geothermal energy use in hydrogen liquefaction. International Journal of Hydrogen Energy 2007; 32(17):4250-4257.
  • 14. Farhar B, Dunlevy P. Feds identify opportunites for potential geothermal development on public Lands. U.S. Department of the Interior, Apr. 2003. http://www.doi.gov/news/030414b.htm.
  • 15. Sherif S, Veriziglo T, Barbir F.: Hydrogen Energy Systems. Wiley Encyclopedia of Electrical and Electronics Engineering, vol. 9, J. G. Webster (Editor), New York: John Wiley & Sons,1999, pp. 370-402.
  • 16. Mirabal ST. An economic analysis of hydrogen production technologies using renewable energy resources. Master Thesis, University of Florida: 2003.
  • 17. Badr M, Benjamin M. Comparative cost of California Central Station Electricity generation technologies, California Energy Commission, June 2003
  • 18. Kruger P.: Alternative energy resources:the quest for sustainable energy, John Wiley&Sons, Hoboken, NJ, 2006.
  • 19. Yuzugullu E, Genung K, Hoesly R. Analysis of geothermally produced hydrogen on the big island of hawaii: a roadmap for the way forward, Hawaii Natural Energy Institute (HNEI),2008.
  • 20. Sigurvinsson J, Mansilla C, Arnason B, Bontemps A, Maréchal A, Sigfusson TI, Werkoff F. Heat transfer problems for the production of hydrogen from geothermal energy. Energy Conversion and Management 2006;47(20):3543-3551.
  • 21. Bloomster CH, Knutsen CA. The economics of geothermal electricity generation from hydrothermal resources, Battelle Pacific Northwest Laboratories (BNWL), Richland, Washington,1989.
Konular Mühendislik (Genel)
Dergi Bölümü Makaleler
Yazarlar

Yazar: Ceyhun Yilmaz
E-posta: ceyhunyilmaz@aku.edu.tr
Kurum: Department of Mechanical Engineering, Afyon Kocatepe University
Ülke: Turkey


Yazar: Mehmet Kanoglu
E-posta: kanoglu@gantep.edu.tr
Kurum: Department of Mechanical Engineering, University of Gaziantep
Ülke: Turkey


Bibtex @derleme { iarej377797, journal = {International Advanced Researches and Engineering Journal}, issn = {}, address = {Dr. Recep HALICIOGLU}, year = {2017}, volume = {1}, pages = {5 - 10}, doi = {}, title = {Investigation of hydrogen production cost by geothermal energy}, language = {en}, key = {cite}, author = {Kanoglu, Mehmet and Yilmaz, Ceyhun} }
APA Yilmaz, C , Kanoglu, M . (2017). Investigation of hydrogen production cost by geothermal energy. International Advanced Researches and Engineering Journal, 1 (1), 5-10. Retrieved from http://dergipark.gov.tr/iarej/issue/33993/377797
MLA Yilmaz, C , Kanoglu, M . "Investigation of hydrogen production cost by geothermal energy". International Advanced Researches and Engineering Journal 1 (2017): 5-10 <http://dergipark.gov.tr/iarej/issue/33993/377797>
Chicago Yilmaz, C , Kanoglu, M . "Investigation of hydrogen production cost by geothermal energy". International Advanced Researches and Engineering Journal 1 (2017): 5-10
RIS TY - JOUR T1 - Investigation of hydrogen production cost by geothermal energy AU - Ceyhun Yilmaz , Mehmet Kanoglu Y1 - 2017 PY - 2017 N1 - DO - T2 - International Advanced Researches and Engineering Journal JF - Journal JO - JOR SP - 5 EP - 10 VL - 1 IS - 1 SN - - M3 - UR - Y2 - 2018 ER -
EndNote %0 International Advanced Researches and Engineering Journal Investigation of hydrogen production cost by geothermal energy %A Ceyhun Yilmaz , Mehmet Kanoglu %T Investigation of hydrogen production cost by geothermal energy %D 2017 %J International Advanced Researches and Engineering Journal %P - %V 1 %N 1 %R %U