Yıl 2014, Cilt 15, Sayı 15, Sayfalar 196 - 207 2014-06-01

CENTRALIZERS IN ORE EXTENSIONS OF POLYNOMIAL RINGS

Johan Richter [1] , Sergei Silvestrov [2]

137 140

In this paper, we consider centralizers of single elements in certain Ore extensions, with a non-invertible endomorphism, of the ring of polynomials in one variable over a field. We show that they are commutative and finitely generated as algebras. We also show that for certain classes of elements their centralizer is singly generated as an algebra.
Ore extension, centralizer
  • S. A. Amitsur, Commutative linear differential operators, Pacific J. Math. 8 (1958), 1–10.
  • D. Arnal and G. Pinczon, On algebraically irreducible representations of the Lie algebra sl(2), J. Math. Phys., 15 (1974), 350–359.
  • V. V. Bavula, Generalized Weyl algebras and their representations, Algebra i Analiz, 4(1) (1992), 75–97; translation in: St. Petersburg Math. J., 4(1), –92.
  • J. P. Bell and L. W. Small, Centralizers in domains of Gelfand-Kirillov dimen- sion 2, Bull. Lond. Math. Soc., 36(6) (2004), 779–785.
  • R. C. Carlson and K. R. Goodearl, Commutants of ordinary differential oper- ators, J. Differential Equations, 35(3) (1980), 339–365.
  • J. Dixmier, Sur les alg`ebres de Weyl, Bull. Soc. Math. France, 96 (1968), 209–
  • K. R. Goodearl, Centralizers in differential, pseudodifferential, and fractional differential operator rings, Rocky Mountain J. Math., 13(4) (1983), 573–618.
  • K. R. Goodearl and R. B. Warfield, An introduction to noncommutative Noe- therian rings, second ed., London Mathematical Society Student Texts, vol. 61, Cambridge University Press, Cambridge, 2004.
  • L. Hellstr¨om and S. D. Silvestrov, Ergodipotent maps and commutativity of elements in noncommutative rings and algebras with twisted intertwining, J. Algebra, 314(1) (2007), 17–41.
  • L. Makar-Limanov, Centralizers in the quantum plane algebra, Studies in Lie theory, Progr. Math., vol. 243, Birkh¨auser Boston, Boston, MA, 2006, pp. 411–
  • J. Richter, Burchnall-Chaundy theory for Ore extensions, Proceedings of the AGMP, Springer-Verlag, (to appear). X. Tang, Maximal commutative subalgebras of certain skew polynomial rings, Johan Richter Centre for Mathematical Sciences Lund University Box 118, SE-22199 Lund, Sweden e-mail: johanr@maths.lth.se Sergei Silvestrov
  • Division of Applied Mathematics The School of Education, Culture and Communication M¨alardalen University Box 883, SE-72123 V¨aster˚as, Sweden e-mail: sergei.silvestrov@mdh.se
Konular
Diğer ID JA36FT97AG
Dergi Bölümü Makaleler
Yazarlar

Yazar: Johan Richter

Yazar: Sergei Silvestrov

Bibtex @ { ieja266247, journal = {International Electronic Journal of Algebra}, issn = {1306-6048}, address = {Prof. Dr. Abdullah HARMANCI}, year = {2014}, volume = {15}, pages = {196 - 207}, doi = {10.24330/ieja.266247}, title = {CENTRALIZERS IN ORE EXTENSIONS OF POLYNOMIAL RINGS}, key = {cite}, author = {Silvestrov, Sergei and Richter, Johan} }
APA Richter, J , Silvestrov, S . (2014). CENTRALIZERS IN ORE EXTENSIONS OF POLYNOMIAL RINGS. International Electronic Journal of Algebra, 15 (15), 196-207. DOI: 10.24330/ieja.266247
MLA Richter, J , Silvestrov, S . "CENTRALIZERS IN ORE EXTENSIONS OF POLYNOMIAL RINGS". International Electronic Journal of Algebra 15 (2014): 196-207 <http://dergipark.gov.tr/ieja/issue/25196/266247>
Chicago Richter, J , Silvestrov, S . "CENTRALIZERS IN ORE EXTENSIONS OF POLYNOMIAL RINGS". International Electronic Journal of Algebra 15 (2014): 196-207
RIS TY - JOUR T1 - CENTRALIZERS IN ORE EXTENSIONS OF POLYNOMIAL RINGS AU - Johan Richter , Sergei Silvestrov Y1 - 2014 PY - 2014 N1 - doi: 10.24330/ieja.266247 DO - 10.24330/ieja.266247 T2 - International Electronic Journal of Algebra JF - Journal JO - JOR SP - 196 EP - 207 VL - 15 IS - 15 SN - 1306-6048-1306-6048 M3 - doi: 10.24330/ieja.266247 UR - http://dx.doi.org/10.24330/ieja.266247 Y2 - 2018 ER -
EndNote %0 International Electronic Journal of Algebra CENTRALIZERS IN ORE EXTENSIONS OF POLYNOMIAL RINGS %A Johan Richter , Sergei Silvestrov %T CENTRALIZERS IN ORE EXTENSIONS OF POLYNOMIAL RINGS %D 2014 %J International Electronic Journal of Algebra %P 1306-6048-1306-6048 %V 15 %N 15 %R doi: 10.24330/ieja.266247 %U 10.24330/ieja.266247