Yıl 2017, Cilt 21, Sayı 21, Sayfalar 1 - 22 2017-01-17

EXTENSIONS OF Σ-ZIP RINGS

Ouyang Lunqun [1] , Zhou Qiong [2] , Wu Jinfang [3]

236 161

t. In this note we consider a new concept, so called Σ-zip ring, which unifies zip rings and weak zip rings. We observe the basic properties of Σ-zip rings, constructing typical examples. We study the relationship between the Σ-zip property of a ring R and that of its Ore extensions and skew generalized power series extensions. As a consequence, we obtain a generalization of several known results relating to zip rings and weak zip rings. 

Σ-zip ring,Ore extension
  • [5] E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta
  • Math. Hungar., 107(3) (2005), 207-224.
  • [6] C. Y. Hong, N. K. Kim, T. K. Kwak and Y. Lee, Extensions of zip rings, J.
  • Pure Appl. Algebra, 195(3) (2005), 231-242.
  • [7] Z. K. Liu, Triangular matrix representations of rings of generalized power series,
  • Acta Math. Sin. (Engl. Ser.), 22(4) (2006), 989-998.
  • [8] G. Marks, On 2-primal Ore extensions, Comm. Algebra, 29(5) (2001), 2113-
  • 2123.
  • [9] R. Mazurek and M. Ziembowski, Uniserial rings of skew generalized power
  • series, J. Algebra, 318(2) (2007), 737-764
  • [10] L. Ouyang, Ore extensions of weak zip rings, Glasg. Math. J., 51(3) (2009),
  • 525-537.
  • [11] M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser.
  • A Math. Sci., 73(1) (1997), 14-17.
  • [12] P. Ribenboim, Rings of generalized power series: Nilpotent elements, Abh.
  • Math. Sem. Univ. Hamburg, 61 (1991), 15-33.
  • [13] P. Ribenboim, Noetherian rings of generalized power series, J. Pure Appl.
  • Algebra, 79(3) (1992), 293-312.
  • [14] J. M. Zelmanowitz, The finite intersection property on annihilator right ideals,
  • Proc. Amer. Math. Soc., 57(2) (1976), 213-216.
Konular
Dergi Bölümü Makaleler
Yazarlar

Yazar: Ouyang Lunqun
E-posta: ouyanglqtxy@163.com

Yazar: Zhou Qiong
E-posta: 1534048513@qq.com

Yazar: Wu Jinfang
E-posta: 418320896@qq.com

Bibtex @araştırma makalesi { ieja295657, journal = {International Electronic Journal of Algebra}, issn = {1306-6048}, address = {Prof. Dr. Abdullah HARMANCI}, year = {2017}, volume = {21}, pages = {1 - 22}, doi = {10.24330/ieja.295657}, title = {EXTENSIONS OF Σ-ZIP RINGS}, key = {cite}, author = {Qiong, Zhou and Jinfang, Wu and Lunqun, Ouyang} }
APA Lunqun, O , Qiong, Z , Jinfang, W . (2017). EXTENSIONS OF Σ-ZIP RINGS. International Electronic Journal of Algebra, 21 (21), 1-22. DOI: 10.24330/ieja.295657
MLA Lunqun, O , Qiong, Z , Jinfang, W . "EXTENSIONS OF Σ-ZIP RINGS". International Electronic Journal of Algebra 21 (2017): 1-22 <http://dergipark.gov.tr/ieja/issue/27921/295657>
Chicago Lunqun, O , Qiong, Z , Jinfang, W . "EXTENSIONS OF Σ-ZIP RINGS". International Electronic Journal of Algebra 21 (2017): 1-22
RIS TY - JOUR T1 - EXTENSIONS OF Σ-ZIP RINGS AU - Ouyang Lunqun , Zhou Qiong , Wu Jinfang Y1 - 2017 PY - 2017 N1 - doi: 10.24330/ieja.295657 DO - 10.24330/ieja.295657 T2 - International Electronic Journal of Algebra JF - Journal JO - JOR SP - 1 EP - 22 VL - 21 IS - 21 SN - 1306-6048-1306-6048 M3 - doi: 10.24330/ieja.295657 UR - http://dx.doi.org/10.24330/ieja.295657 Y2 - 2016 ER -
EndNote %0 International Electronic Journal of Algebra EXTENSIONS OF Σ-ZIP RINGS %A Ouyang Lunqun , Zhou Qiong , Wu Jinfang %T EXTENSIONS OF Σ-ZIP RINGS %D 2017 %J International Electronic Journal of Algebra %P 1306-6048-1306-6048 %V 21 %N 21 %R doi: 10.24330/ieja.295657 %U 10.24330/ieja.295657