Yıl 2017, Cilt 21, Sayı 21, Sayfalar 180 - 197 2017-01-17

WEAKLY NIL-CLEAN INDEX AND UNIQUELY WEAKLY NIL-CLEAN RINGS

Andrada Ciımpean [1] , Peter Danchev [2]

149 133

  We introduce and study the weakly nil-clean index associated to a ring. We also give some simple properties of this index and show that rings with the weakly nil-clean index 1 are precisely those rings that are abelian weakly nil-clean, thus showing that they coincide with uniquely weakly nil-clean rings. Next, we define certain types of nilpotent elements and weakly nil-clean decompositions by obtaining some results when the weakly nil-clean index is at most 2 and, moreover, we somewhat characterize rings with weakly nil-clean index 2. After that, we compute the weakly nil-clean index for T2(Zp), T3(Zp) and M2(Z3), respectively, as well as we establish a result on the weakly nilclean index of Mn(R) whenever R is a ring. Our results considerably extend and correct the corresponding ones from [Int. Electron. J. Algebra 15(2014), 145–156]

: Nil-clean ring,uniquely nil-clean ring,weakly nil-clean ring
  • [1] D. K. Basnet and J. Bhattacharyya, Nil clean index of rings, Int. Electron. J.
  • Algebra, 15 (2014), 145–156.
  • [2] S. Breaz, G. C˘alug˘areanu, P. Danchev and T. Micu, Nil-clean matrix rings,
  • Linear Algebra Appl., 439(10) (2013), 3115–3119.
  • [3] S. Breaz, P. Danchev and Y. Zhou, Rings in which every element is either a
  • sum or a difference of a nilpotent and an idempotent, J. Algebra Appl., 15(8) (2016), 1650148, 11 pp.
  • [4] S. Breaz and G. C. Modoi, Nil-clean companion matrices, Linear Algebra Appl., 489 (2016), 50–60.
  • [5] H. Chen, On uniquely clean rings, Comm. Algebra, 39(1) (2011), 189–198
  • [6] P. V. Danchev, Weakly UU rings, Tsukuba J. Math., 40(1) (2016), 101–118.
  • [7] P. V. Danchev and W. Wm. McGovern, Commutative weakly nil clean unital rings, J. Algebra, 425 (2015), 410-422.
  • [8] A. J. Diesl, Nil clean rings, J. Algebra, 383 (2013), 197–211.
  • [9] T. Y. Lam, A First Course in Noncommutative Rings, Second Edition, Grad.
  • Texts in Math., 131, Springer-Verlag, New York, 2001.
  • [10] T. K. Lee and Y. Zhou, Clean index of rings, Comm. Algebra, 40(3) (2012), 807–822.
  • [11] T. K. Lee and Y. Zhou, Rings of clean index 4 and applications, Comm. Algebra,
  • 41(1) (2013), 238–259.
  • [12] J. Ster, Nil clean involutions, arXiv preprint, (2015).
Konular Matematik ve İstatistik
Dergi Bölümü Makaleler
Yazarlar

Yazar: Andrada Ciımpean
E-posta: cimpean andrada@yahoo.com

Yazar: Peter Danchev
E-posta: pvdanchev@yahoo.com

Bibtex @araştırma makalesi { ieja296326, journal = {International Electronic Journal of Algebra}, issn = {1306-6048}, address = {Prof. Dr. Abdullah HARMANCI}, year = {2017}, volume = {21}, pages = {180 - 197}, doi = {10.24330/ieja.296326}, title = {WEAKLY NIL-CLEAN INDEX AND UNIQUELY WEAKLY NIL-CLEAN RINGS}, key = {cite}, author = {Danchev, Peter and Ciımpean, Andrada} }
APA Ciımpean, A , Danchev, P . (2017). WEAKLY NIL-CLEAN INDEX AND UNIQUELY WEAKLY NIL-CLEAN RINGS. International Electronic Journal of Algebra, 21 (21), 180-197. DOI: 10.24330/ieja.296326
MLA Ciımpean, A , Danchev, P . "WEAKLY NIL-CLEAN INDEX AND UNIQUELY WEAKLY NIL-CLEAN RINGS". International Electronic Journal of Algebra 21 (2017): 180-197 <http://dergipark.gov.tr/ieja/issue/27921/296326>
Chicago Ciımpean, A , Danchev, P . "WEAKLY NIL-CLEAN INDEX AND UNIQUELY WEAKLY NIL-CLEAN RINGS". International Electronic Journal of Algebra 21 (2017): 180-197
RIS TY - JOUR T1 - WEAKLY NIL-CLEAN INDEX AND UNIQUELY WEAKLY NIL-CLEAN RINGS AU - Andrada Ciımpean , Peter Danchev Y1 - 2017 PY - 2017 N1 - doi: 10.24330/ieja.296326 DO - 10.24330/ieja.296326 T2 - International Electronic Journal of Algebra JF - Journal JO - JOR SP - 180 EP - 197 VL - 21 IS - 21 SN - 1306-6048-1306-6048 M3 - doi: 10.24330/ieja.296326 UR - http://dx.doi.org/10.24330/ieja.296326 Y2 - 2016 ER -
EndNote %0 International Electronic Journal of Algebra WEAKLY NIL-CLEAN INDEX AND UNIQUELY WEAKLY NIL-CLEAN RINGS %A Andrada Ciımpean , Peter Danchev %T WEAKLY NIL-CLEAN INDEX AND UNIQUELY WEAKLY NIL-CLEAN RINGS %D 2017 %J International Electronic Journal of Algebra %P 1306-6048-1306-6048 %V 21 %N 21 %R doi: 10.24330/ieja.296326 %U 10.24330/ieja.296326