Yıl 2017, Cilt 22, Sayı 22, Sayfalar 97 - 102 2017-07-11

A characterization of Gorenstein Dedekind domains

Tao Xiong [1]

86 97

In this paper, we show that a domain $R$ is a Gorenstein Dedekind
domain if and only if every divisible module is Gorenstein
injective; if and only if every divisible module is copure
injective.

Gorenstein Dedekind domain, divisible module
  • S. Bazzoni and L. Salce, Almost perfect domains, Colloq. Math., 95(2) (2003), 285-301.
  • D. Bennis, A short survey on Gorenstein global dimension, Actes des rencontres du C.I.R.M., 2(2) (2010), 115-117.
  • D. Bennis and N. Mahdou, Global Gorenstein dimensions, Proc. Amer. Math. Soc., 138(2) (2010), 461-465.
  • E. E. Enochs and O. M. G. Jenda, Copure injective resolutions, at resolvents and dimensions, Comment. Math. Univ. Carolin., 34(2) (1993), 203-211.
  • E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z., 220(4) (1995), 611-633.
  • E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, de Gruyter Exp. Math., Vol. 30, Walter de Gruyter, Berlin, 2000.
  • X. H. Fu, H. Y. Zhu and N. Q. Ding, On copure projective modules and copure projective dimensions, Comm. Algebra, 40(1) (2012), 343-359.
  • L. Fuchs and S. B. Lee, Weak-injectivity and almost perfect domains, J. Algebra, 321(1) (2009), 18-27.
  • R. Hamsher, On the structure of a one dimensional quotient field, J. Algebra, 19 (1971), 416-425.
  • S. B. Lee, h-Divisible modules, Comm. Algebra, 31(1) (2003), 513-525.
  • S. B. Lee, Weak-injective modules, Comm. Algebra, 34(1) (2006), 361-370.
Konular Matematik
Dergi Bölümü Makaleler
Yazarlar

Yazar: Tao Xiong

Bibtex @araştırma makalesi { ieja325929, journal = {International Electronic Journal of Algebra}, issn = {1306-6048}, eissn = {1306-6048}, address = {Prof. Dr. Abdullah HARMANCI}, year = {2017}, volume = {22}, pages = {97 - 102}, doi = {10.24330/ieja.325929}, title = {A characterization of Gorenstein Dedekind domains}, key = {cite}, author = {Xiong, Tao} }
APA Xiong, T . (2017). A characterization of Gorenstein Dedekind domains. International Electronic Journal of Algebra, 22 (22), 97-102. DOI: 10.24330/ieja.325929
MLA Xiong, T . "A characterization of Gorenstein Dedekind domains". International Electronic Journal of Algebra 22 (2017): 97-102 <http://dergipark.gov.tr/ieja/issue/30344/325929>
Chicago Xiong, T . "A characterization of Gorenstein Dedekind domains". International Electronic Journal of Algebra 22 (2017): 97-102
RIS TY - JOUR T1 - A characterization of Gorenstein Dedekind domains AU - Tao Xiong Y1 - 2017 PY - 2017 N1 - doi: 10.24330/ieja.325929 DO - 10.24330/ieja.325929 T2 - International Electronic Journal of Algebra JF - Journal JO - JOR SP - 97 EP - 102 VL - 22 IS - 22 SN - 1306-6048-1306-6048 M3 - doi: 10.24330/ieja.325929 UR - http://dx.doi.org/10.24330/ieja.325929 Y2 - 2018 ER -
EndNote %0 International Electronic Journal of Algebra A characterization of Gorenstein Dedekind domains %A Tao Xiong %T A characterization of Gorenstein Dedekind domains %D 2017 %J International Electronic Journal of Algebra %P 1306-6048-1306-6048 %V 22 %N 22 %R doi: 10.24330/ieja.325929 %U 10.24330/ieja.325929
ISNAD Xiong, Tao . "A characterization of Gorenstein Dedekind domains". International Electronic Journal of Algebra 22 / 22 (Temmuz 2017): 97-102. http://dx.doi.org/10.24330/ieja.325929