Yıl 2017, Cilt 22, Sayı 22, Sayfalar 133 - 146 2017-07-11

Atomic and AP semigroup rings $F[X;M]$, where $M$ is a submonoid of the additive monoid of nonnegative rational numbers

Ryan Gipson [1] , Hamid Kulosman [2]

100 58

We investigate the atomicity and the AP property of the semigroup rings $F[X;M]$, where  $F$ is a field, $X$ is a variable and $M$ is a submonoid of the additive monoid of nonnegative rational numbers. The main notion that we introduce for the purpose of the investigation is the notion of essential generators of $M$.
 

Semigroup ring, atomic domain
  • P. J. Allen and L. Dale, Ideal theory in the semiring Z+, Publ. Math. Debrecen, 22 (1975), 219-224.
  • D. D. Anderson, D. F. Anderson and M. Zafrullah, Factorization in integral domains, J. Pure Appl. Algebra, 69(1) (1990), 1-19.
  • R. C. Daileda, A non-UFD integral domains in which irreducibles are prime, preprint. http://ramanujan.math.trinity.edu/rdaileda/teach/m4363s07/non_ufd.pdf.
  • R. Gilmer, Commutative Semigroup Rings, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1984.
Konular Matematik ve İstatistik
Dergi Bölümü Makaleler
Yazarlar

Yazar: Ryan Gipson
E-posta: ryan.gipson@louisville.edu

Yazar: Hamid Kulosman
E-posta: hamid.kulosman@louisville.edu

Bibtex @araştırma makalesi { ieja325939, journal = {International Electronic Journal of Algebra}, issn = {1306-6048}, address = {Prof. Dr. Abdullah HARMANCI}, year = {2017}, volume = {22}, pages = {133 - 146}, doi = {10.24330/ieja.325939}, title = {Atomic and AP semigroup rings \$F[X;M]\$, where \$M\$ is a submonoid of the additive monoid of nonnegative rational numbers}, key = {cite}, author = {Gipson, Ryan and Kulosman, Hamid} }
APA Gipson, R , Kulosman, H . (2017). Atomic and AP semigroup rings $F[X;M]$, where $M$ is a submonoid of the additive monoid of nonnegative rational numbers. International Electronic Journal of Algebra, 22 (22), 133-146. DOI: 10.24330/ieja.325939
MLA Gipson, R , Kulosman, H . "Atomic and AP semigroup rings $F[X;M]$, where $M$ is a submonoid of the additive monoid of nonnegative rational numbers". International Electronic Journal of Algebra 22 (2017): 133-146 <http://dergipark.gov.tr/ieja/issue/30344/325939>
Chicago Gipson, R , Kulosman, H . "Atomic and AP semigroup rings $F[X;M]$, where $M$ is a submonoid of the additive monoid of nonnegative rational numbers". International Electronic Journal of Algebra 22 (2017): 133-146
RIS TY - JOUR T1 - Atomic and AP semigroup rings $F[X;M]$, where $M$ is a submonoid of the additive monoid of nonnegative rational numbers AU - Ryan Gipson , Hamid Kulosman Y1 - 2017 PY - 2017 N1 - doi: 10.24330/ieja.325939 DO - 10.24330/ieja.325939 T2 - International Electronic Journal of Algebra JF - Journal JO - JOR SP - 133 EP - 146 VL - 22 IS - 22 SN - 1306-6048-1306-6048 M3 - doi: 10.24330/ieja.325939 UR - http://dx.doi.org/10.24330/ieja.325939 Y2 - 2018 ER -
EndNote %0 International Electronic Journal of Algebra Atomic and AP semigroup rings $F[X;M]$, where $M$ is a submonoid of the additive monoid of nonnegative rational numbers %A Ryan Gipson , Hamid Kulosman %T Atomic and AP semigroup rings $F[X;M]$, where $M$ is a submonoid of the additive monoid of nonnegative rational numbers %D 2017 %J International Electronic Journal of Algebra %P 1306-6048-1306-6048 %V 22 %N 22 %R doi: 10.24330/ieja.325939 %U 10.24330/ieja.325939