Yıl 2018, Cilt 23, Sayı 23, Sayfalar 47 - 114 2018-01-11

The representation type of the character ring

Tim Fritzsche [1]

38 55

Let R(G) be the character ring of a nite group G. We consider
the question whether the representation type of R(G) is nite or in nite. We
show that if R(G) is representation- nite, then exp(G) is cube-free and the
Sylow subgroups of G are cyclic, elementary-abelian, or nonabelian of order
8. Moreover, we give further necessary as well as some sucient conditions on
the structure of G for the niteness of the representation type of R(G).
Character ring, representation type, almost 2-transitive groups of cube-free order
  • S. D. Berman, On the theory of representations of nite groups, Doklady Akad. Nauk SSSR (N.S.), 86 (1952), 885-888.
  • S. D. Berman, Characters of linear representations of nite groups over an arbitrary eld, Mat. Sb. N.S., 44(86) (1958), 409-456.
  • S. D. Berman and P. M. Gudivok, Indecomposable representations of nite groups over the ring of p-adic integers, Izv. Akad. Nauk SSSR Ser. Mat., 28 (1964), 875-910.
  • R. Brauer, A characterization of the characters of groups of nite order, Ann. of Math., 57 (1953), 357-377.
  • J. Coates, p-adic L-functions and Iwasawa's theory, Algebraic number elds: L-functions and Galois properties (Proc. Sympos., Univ. Durham, 1975) Academic Press, London, 1977, 269-353.
  • H. Cohen, Number Theory I, Tools and Diophantine Equations, Graduate Texts in Mathematics, 239, Springer, New York, 2007.
  • H. Cohen, Number Theory II, Analytic and Modern Tools, Graduate Texts in Mathematics, 240, Springer, New York, 2007.
  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Oxford University Press, Eynsham, 1985.
  • B. N. Cooperstein, Maximal subgroups of G2(2n), J. Algebra, 70(1) (1981), 23-36.
  • M. Costantini and E. Jabara, On nite groups in which cyclic subgroups of the same order are conjugate, Comm. Algebra, 37(11) (2009), 3966-3990.
  • D. A. Craven, The Theory of Fusion Systems: an algebraic approach, Cambridge Studies in Advanced Mathematics, 131, Cambridge University Press, Cambridge, 2011.
  • C. W. Curtis and I. Reiner, Methods of Representation Theory. Vol. I, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1981.
  • D. I. Deriziotis and G. O. Michler, Character table and blocks of nite simple triality groups 3D4(q), Trans. Amer. Math. Soc., 303(1) (1987), 39-70.
  • L. Dornho , The rank of primitive solvable permutation groups, Math. Z., 109 (1969), 205-210.
  • L. Dornho , Group Representation Theory. Part A: Ordinary Representation Theory, Pure and Applied Mathematics, 7, Marcel Dekker, Inc., New York, 1971.
  • J. A. Drozd and A. V. Roter, Commutative rings with a nite number of indecomposable integral representations, Izv. Akad. Nauk SSSR Ser. Mat., 31 (1967), 783-798.
  • R. H. Dye, On the involution classes of the linear groups GLn(K), SLn(K), PGLn(K), PSLn(K) over elds of characteristic two, Proc. Cambridge Philos. Soc., 72 (1972), 1-6.
  • R. H. Dye, On the conjugacy classes of involutions of the unitary groups Um(K), SUm(K), PUm(K), PSUm(K), over perfect elds of characteristic 2, J. Algebra, 24 (1973), 453-459.
  • D. A. Foulser, Solvable primitive permutation groups of low rank, Trans. Amer. Math. Soc., 143 (1969), 1-54.
  • T. Fritzsche, The Brauer group of character rings, J. Algebra, 361 (2012), 37-40.
  • T. Fritzsche, Der Darstellungstyp des Charakterrings Einer Endlichen Gruppe, Friedrich Schiller University Jena, 2014.
  • E. L. Green and I. Reiner, Integral representations and diagrams, Michigan Math. J., 25(1) (1978), 53-84.
  • A. Heller and I. Reiner, Representations of cyclic groups in rings of integers, I, Ann. of Math., 76 (1962), 73-92.
  • A. Heller and I. Reiner, Representations of cyclic groups in rings of integers, II, Ann. of Math., 77 (1963), 318-328.
  • C. Hering, Transitive linear groups and linear groups which contain irreducible subgroups of prime order, Geometriae Dedicata, 2 (1974), 425-460.
  • G. Higman, Suzuki 2-groups, Illinois J. Math., 7 (1963), 79-96.
  • B. Huppert and N. Blackburn, Finite Groups II, Grundlehren der Mathematischen Wissenschaften 242, Springer-Verlag, Berlin-New York, 1982.
  • B. Huppert and N. Blackburn, Finite Groups III, Grundlehren der Mathematischen Wissenschaften 243, Springer-Verlag, Berlin-New York, 1982.
  • I. M. Isaacs, Character Theory of Finite Groups, Dover Publications, Inc., New York, 1994.
  • H. Jacobinski, Sur les ordres commutatifs avec un nombre ni de reseaux indecomposables, Acta Math., 118 (1967), 1-31.
  • A. Jones, Groups with a nite number of indecomposable integral representa- tions, Michigan Math. J., 10 (1963), 257-261.
  • H. E. Jordan, Group-characters of various types of linear groups, Amer. J. Math., 29(4) (1907), 387-405.
  • P. B. Kleidman, The maximal subgroups of the Chevalley groups G2(q) with q odd, the Ree groups 2G2(q), and their automorphism groups, J. Algebra, 117(1) (1988), 30-71.
  • G. Navarro and J. Tent, Rationality and Sylow 2-subgroups, Proc. Edinb. Math. Soc., 53 (2010), 787-798.
  • A. Raggi-Cardenas, Burnside rings of nite representation type, Bull. Austral. Math. Soc., 42(2) (1990), 247-251.
  • U. Reichenbach, Modultheorie von Burnsideringen Endlicher Gruppen, Mathematica Gottingensis 12, 1997.
  • J.-P. Serre, Lineare Darstellungen Endlicher Gruppen, Akademie-Verlag, Berlin, 1972.
  • E. E. Shult, On nite automorphic algebras, Illinois J. Math., 13 (1969), 625- 653.
  • W. A. Simpson and J. S. Frame, The character tables for SL(3; q), SU(3; q2), PSL(3; q), PSU(3; q2), Canad. J. Math., 25 (1973), 486-494.
  • R. Steinberg, The representations of GL(3; q), GL(4; q), PGL(3; q), and PGL(4; q), Canad. J. Math., 3 (1951), 225-235.
  • M. Suzuki, On a class of doubly transitive groups, Ann. of Math., 75 (1962), 105-145.
  • H. N. Ward, On Ree's series of simple groups, Trans. Amer. Math. Soc., 121 (1966), 62-89.
  • R. A. Wilson, The Finite Simple Groups, Graduate Texts in Mathematics, 251, Springer-Verlag London, Ltd., London, 2009.
  • H. Yamaki, The order of a group of even order, Proc. Amer. Math. Soc., 136(2) (2008), 397-402.
Konular
Dergi Bölümü Makaleler
Yazarlar

Yazar: Tim Fritzsche

Bibtex @araştırma makalesi { ieja373645, journal = {International Electronic Journal of Algebra}, issn = {1306-6048}, eissn = {1306-6048}, address = {Prof. Dr. Abdullah HARMANCI}, year = {2018}, volume = {23}, pages = {47 - 114}, doi = {10.24330/ieja.373645}, title = {The representation type of the character ring}, key = {cite}, author = {Fritzsche, Tim} }
APA Fritzsche, T . (2018). The representation type of the character ring. International Electronic Journal of Algebra, 23 (23), 47-114. DOI: 10.24330/ieja.373645
MLA Fritzsche, T . "The representation type of the character ring". International Electronic Journal of Algebra 23 (2018): 47-114 <http://dergipark.gov.tr/ieja/issue/33727/373645>
Chicago Fritzsche, T . "The representation type of the character ring". International Electronic Journal of Algebra 23 (2018): 47-114
RIS TY - JOUR T1 - The representation type of the character ring AU - Tim Fritzsche Y1 - 2018 PY - 2018 N1 - doi: 10.24330/ieja.373645 DO - 10.24330/ieja.373645 T2 - International Electronic Journal of Algebra JF - Journal JO - JOR SP - 47 EP - 114 VL - 23 IS - 23 SN - 1306-6048-1306-6048 M3 - doi: 10.24330/ieja.373645 UR - http://dx.doi.org/10.24330/ieja.373645 Y2 - 2018 ER -
EndNote %0 International Electronic Journal of Algebra The representation type of the character ring %A Tim Fritzsche %T The representation type of the character ring %D 2018 %J International Electronic Journal of Algebra %P 1306-6048-1306-6048 %V 23 %N 23 %R doi: 10.24330/ieja.373645 %U 10.24330/ieja.373645
ISNAD Fritzsche, Tim . "The representation type of the character ring". International Electronic Journal of Algebra 23 / 23 (Ocak 2018): 47-114. http://dx.doi.org/10.24330/ieja.373645