Yıl 2018, Cilt 23, Sayı 23, Sayfalar 131 - 142 2018-01-11

Gorenstein homological dimensions with respect to a semidualizing module

Zhen Zhang [1] , Jiaqun Wei [2]

13 19

In this paper, let R be a commutative ring and C a semidualizing
module. We investigate the (weak) C-Gorenstein global dimension of R
and we get a simple formula to compute the C-Gorenstein global dimension.
Moreover, we compare it with the classical (weak) global dimension of R and
get the relations between them. At last, we compare the weak C-Gorenstein
global dimension with the C-Gorenstein global dimension and we get that they
are equal when R is Noetherian.
Semidualizing module,trivial extension ring,C-Gorenstein projective dimension
  • D. Bennis and N. Mahdou, Strongly Gorenstein projective, injective, and flat modules, J. Pure Appl. Algebra, 210(2) (2007), 437-445.
  • D. Bennis and N. Mahdou, Global Gorenstein dimensions, Proc. Amer. Math. Soc., 138(2) (2010), 461-465.
  • I. Emmanouil, On the niteness of Gorenstein homological dimensions, J. Al- gebra, 372 (2012), 376-396.
  • E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, De Gruyter Expositions in Mathematics, 3, Walter de Gruyter & Co., Berlin, 2000.
  • R. M. Fossum, P. A. Grith and I. Reiten, Trivial Extensions of Abelian Cate- gories, Homological algebra of trivial extensions of abelian categories with ap- plications to ring theory, Lecture Notes in Mathematics, 456, Springer-Verlag, Berlin-New York, 1975.
  • H.-B. Foxby, Gorenstein modules and related modules, Math. Scand., 31 (1972), 267-284.
  • E. S. Golod, G-dimension and generalized perfect ideals, Trudy Mat. Inst. Steklov., 165 (1984), 62-66.
  • H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra, 189(1-3) (2004), 167-193.
  • H. Holm and P. Jrgensen, Semi-dualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra, 205(2) (2006), 423-445.
  • H. Holm and D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ., 47(4) (2007), 781-808.
  • S. Sather-Wagstaff, T. Sharif and D. White, Tate cohomology with respect to semidualizing modules, J. Algebra, 324(9) (2010), 2336-2368.
  • W. V. Vasconcelos, Divisor Theory in Module Categories, North-Holland Mathematics Studies, 14, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1974.
  • C. A. Weibel, An Introduction to Homological Algebra, Cambridge Stud. Adv. Math., 38, Cambridge University Press, Cambridge, 1994.
  • D. White, Gorenstein projective dimension with respect to a semidualizing mod- ule, J. Commut. Algebra, 2(1) (2010), 111-137.
  • G. Zhao and J. Sun, Global dimensions of rings with respect to a semidualizing module, avilable from https://arxiv.org/abs/1307.0628.
Konular
Dergi Bölümü Makaleler
Yazarlar

Yazar: Zhen Zhang
E-posta: zhangzhendzq@163.com

Yazar: Jiaqun Wei
E-posta: weijiaqun@njnu.edu.cn

Bibtex @araştırma makalesi { ieja373654, journal = {International Electronic Journal of Algebra}, issn = {1306-6048}, address = {Prof. Dr. Abdullah HARMANCI}, year = {2018}, volume = {23}, pages = {131 - 142}, doi = {10.24330/ieja.373654}, title = {Gorenstein homological dimensions with respect to a semidualizing module}, key = {cite}, author = {Zhang, Zhen and Wei, Jiaqun} }
APA Zhang, Z , Wei, J . (2018). Gorenstein homological dimensions with respect to a semidualizing module. International Electronic Journal of Algebra, 23 (23), 131-142. DOI: 10.24330/ieja.373654
MLA Zhang, Z , Wei, J . "Gorenstein homological dimensions with respect to a semidualizing module". International Electronic Journal of Algebra 23 (2018): 131-142 <http://dergipark.gov.tr/ieja/issue/33727/373654>
Chicago Zhang, Z , Wei, J . "Gorenstein homological dimensions with respect to a semidualizing module". International Electronic Journal of Algebra 23 (2018): 131-142
RIS TY - JOUR T1 - Gorenstein homological dimensions with respect to a semidualizing module AU - Zhen Zhang , Jiaqun Wei Y1 - 2018 PY - 2018 N1 - doi: 10.24330/ieja.373654 DO - 10.24330/ieja.373654 T2 - International Electronic Journal of Algebra JF - Journal JO - JOR SP - 131 EP - 142 VL - 23 IS - 23 SN - 1306-6048-1306-6048 M3 - doi: 10.24330/ieja.373654 UR - http://dx.doi.org/10.24330/ieja.373654 Y2 - 2018 ER -
EndNote %0 International Electronic Journal of Algebra Gorenstein homological dimensions with respect to a semidualizing module %A Zhen Zhang , Jiaqun Wei %T Gorenstein homological dimensions with respect to a semidualizing module %D 2018 %J International Electronic Journal of Algebra %P 1306-6048-1306-6048 %V 23 %N 23 %R doi: 10.24330/ieja.373654 %U 10.24330/ieja.373654