Yıl 2018, Cilt 5, Sayı 4, Sayfalar 682 - 700 2018-12-16

Automating Simulation Research for Item Response Theory using R

Sunbok Lee [1] , Youn-Jeng Choi [2] , Allan S. Cohen [3]

33 44

A simulation study is a useful tool in examining how validly item response theory (IRT) models can be applied in various settings. Typically, a large number of replications are required to obtain the desired precision. However, many standard software packages in IRT, such as MULTILOG and BILOG, are not well suited for a simulation study requiring a large number of replications because they were developed as a stand-alone software package that is best suited for a single run. This article demonstrated how built-in R functions can be used to automate the simulation study using the stand-alone software packages in IRT. For a demonstration purpose, MULTILOG was used in the example codes in the appendices, but the overall framework of a simulation study and the built-in R functions used in this article can be applied for a simulation study using other stand-alone software packages as well.
IRT, Simulation, R
  • Bandalos, D. L. (2006). The use of monte carlo studies in structural equation modeling research. In Structural equation modeling: A second course (pp. 385–426).
  • Greenwich, CT: Information Age.
  • De Ayala, R. J. (2009). Theory and practice of item response theory. New York, NY: The Guilford Press. Finch, H. (2008). Estimation of item response theory parameters in the presence of missing data. Journal of Educational Measurement, 45, 225–245.
  • Friedl, J. (2006). Mastering regular expressions. Sebastopol, CA: O’Reilly Media, Inc.
  • Harwell, M., Stone, C. A., Hsu, T.-C., & Kirisci, L. (1996). Monte carlo studies in item response theory. Applied Psychological Measurement, 20, 101–125.
  • Kim, H. J., Brennan, R. L., & Lee, W. C. (2017). Structural Zeros and Their Implications With Log‐Linear Bivariate Presmoothing Under the Internal‐Anchor Design. Journal of Educational Measurement, 54, 145-164.
  • Kim, K. Y., & Lee, W. C. (2017). The Impact of Three Factors on the Recovery of Item Parameters for the Three-Parameter Logistic Model. Applied Measurement in Education, 30, 228-242.
  • Kim, S., & Lee, W. C. (2006). An Extension of Four IRT Linking Methods for Mixed‐Format Tests. Journal of Educational Measurement, 43, 53-76.
  • Nader, I. W., Tran, U. S., & Voracek, M. (2015). Effects of Initial Values and Convergence Criterion in the Two-Parameter Logistic Model When Estimating the Latent Distribution in BILOG-MG 3. PloS one, 10, e0140163.
  • Partchev, I. (2009). irtoys: Simple interface to the estimation and plotting of irt models. R package version 0.1, 2.
  • R Core Team. (2015). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from http://www.R-project.org/ (ISBN 3-900051-07-0)
  • Reckase, M. D. (1979). Unifactor latent trait models applied to multifactor tests: Results and implications. Journal of Educational and Behavioral Statistics, 4, 207–230.
  • Spector, P. (2008). Data manipulation with r. New York, NY: Springer.
  • Stone, C. A. (2000). Monte Carlo based null distribution for an alternative goodness‐of‐fit test statistic in IRT models. Journal of Educational Measurement, 37, 58-75.
  • Thissen, D., Chen, W.-H., & Bock, R. D. (2003). Multilog 7 for windows: Multiple-category item analysis and test scoring using item response theory [computer software]. lincolnwood, il: Scientific software international. IL: Scientific Software International.
  • Zimowski, M. F., Muraki, E., Mislevy, R. J., & Bock, R. D. (1996). Bilog-mg: Multiple-group irt analysis and test maintenance for binary items. Chicago: Scientific Software International, 4(85), 10.
Birincil Dil en
Konular Eğitim, Bilimsel Disiplinler
Yayımlanma Tarihi December
Dergi Bölümü Makaleler
Yazarlar

Orcid: 0000-0002-0924-7056
Yazar: Sunbok Lee (Sorumlu Yazar)
Kurum: University of Houston
Ülke: United States


Yazar: Youn-Jeng Choi
Kurum: The University of Alabama
Ülke: United States


Yazar: Allan S. Cohen
Kurum: University of Georgia
Ülke: United States


Bibtex @araştırma makalesi { ijate472185, journal = {International Journal of Assessment Tools in Education}, issn = {}, eissn = {2148-7456}, address = {İzzet KARA}, year = {2018}, volume = {5}, pages = {682 - 700}, doi = {10.21449/ijate.472185}, title = {Automating Simulation Research for Item Response Theory using R}, key = {cite}, author = {Choi, Youn-Jeng and Lee, Sunbok and Cohen, Allan S.} }
APA Lee, S , Choi, Y , Cohen, A . (2018). Automating Simulation Research for Item Response Theory using R. International Journal of Assessment Tools in Education, 5 (4), 682-700. DOI: 10.21449/ijate.472185
MLA Lee, S , Choi, Y , Cohen, A . "Automating Simulation Research for Item Response Theory using R". International Journal of Assessment Tools in Education 5 (2018): 682-700 <http://dergipark.gov.tr/ijate/issue/38884/472185>
Chicago Lee, S , Choi, Y , Cohen, A . "Automating Simulation Research for Item Response Theory using R". International Journal of Assessment Tools in Education 5 (2018): 682-700
RIS TY - JOUR T1 - Automating Simulation Research for Item Response Theory using R AU - Sunbok Lee , Youn-Jeng Choi , Allan S. Cohen Y1 - 2018 PY - 2018 N1 - doi: 10.21449/ijate.472185 DO - 10.21449/ijate.472185 T2 - International Journal of Assessment Tools in Education JF - Journal JO - JOR SP - 682 EP - 700 VL - 5 IS - 4 SN - -2148-7456 M3 - doi: 10.21449/ijate.472185 UR - http://dx.doi.org/10.21449/ijate.472185 Y2 - 2018 ER -
EndNote %0 International Journal of Assessment Tools in Education Automating Simulation Research for Item Response Theory using R %A Sunbok Lee , Youn-Jeng Choi , Allan S. Cohen %T Automating Simulation Research for Item Response Theory using R %D 2018 %J International Journal of Assessment Tools in Education %P -2148-7456 %V 5 %N 4 %R doi: 10.21449/ijate.472185 %U 10.21449/ijate.472185
ISNAD Lee, Sunbok , Choi, Youn-Jeng , Cohen, Allan S. . "Automating Simulation Research for Item Response Theory using R". International Journal of Assessment Tools in Education 5 / 4 (Aralık 2018): 682-700. http://dx.doi.org/10.21449/ijate.472185