Yıl 2018, Cilt 3, Sayı 3, Sayfalar 108 - 118 2018-10-01

POSSIBLE CONTRIBUTIONS OF SPATIAL SEMANTIC METHODS AND TECHNOLOGIES TO MULTI-REPRESENTATION SPATIAL DATABASE PARADIGM

Abdulkadir Memduhoglu [1] , Melih Basaraner [2]

122 114

Today, the amount and variety of spatial data have increased dramatically. In addition, the web has made it easier to disseminate and share this kind of data. Therefore, spatial data integration and interoperability have gained more importance. Spatial data are collected from different sources and often heterogeneous in terms of the levels of detail and the points of view. To able to meet the demands of different spatial applications, multi-source and heterogeneous spatial datasets need to be integrated as well as the consistency of these datasets need to be maintained. In this context, multi-representation spatial database (MRSDB) paradigm has been suggested by researchers. However, the heterogeneity constitutes a significant barrier in this respect and hence the implementations have so far been remained within a rather narrow scope. In this article, it is mainly discussed about the possible contributions of basic methods and technologies of spatial semantics such as ontologies, semantic web and linked data to the data integration for creating a MRSBD. Some examples are also given to illustrate the concept.
Spatial Semantics, Multi-Representation Spatial Databases, Semantic Interoperability, Spatial Ontologies, Linked Spatial Data
  • Annoni, A., Friis-Christensen, A., Lucchi, R. and Lutz, M., 2008. Requirements and challenges for building a European spatial information infrastructure: INSPIRE, In Creating Spatial Information Infrastructures: Towards the Spatial Semantic Web (van Oosterom P. and Zlatanova S., Eds.), CRC Press, Boca Raton, Florida, USA.
  • Auer, S., Lehmann J. and Hellmann S., 2009. Linkedgeodata: Adding a spatial dimension to the web of data, 8th International Semantic Web Conference (ISWC 2009), Washington, DC, USA, pp. 731-746.
  • Basaraner, M., 2012. An investigation of semantic, geometric and graphic heterogeneities of building and facility objects in a multi-resolution spatial database, Proceedings of 4th International Conference on Cartography and GIS, Albena, Bulgaria.
  • Basaraner, M., 2013. Taxonomies of building objects towards topographic and thematic geo-ontologies, 26th International Cartographic Conference, Dresden, Germany.
  • Basaraner, M., 2016. Revisiting cartography: towards identifying and developing a modern and comprehensive framework, Geocarto International, 31(1), 71–91.
  • Beckett, D. and McBride, B., 2004. RDF/XML syntax specification (revised), W3C Recommendation, W3C Consortium.
  • Bedard, Y. and Bernier E., 2002. Supporting multiple representations with spatial databases views management and the concept of VUEL, ISPRS/ICA Joint Workshop on Multi-Scale Representations of Spatial Data, Ottawa, USA, pp. 1–14.
  • Benslimane, D., Vangenot C., Roussey C. and Arara A., 2003. Multirepresentation in ontologies, Proceedings of Advances in Databases and Information Systems: 7th East European Conference (ADBIS 2003) (Kalinichenko, L., Manthey, R., Thalheim, B. and Wloka, U., Eds.), Heidelberg: Springer-Verlag, Dresden, Germany.
  • Berners-Lee, T., Hendler J. and Lassila O., 2001. The semantic Web, Scientific American, 284(5), 28–37.
  • Bishr, A. Y., Pundt H., Kuhn W. and Radwan, M., 1999. Probing the concept of information communities-a first step toward semantic interoperability, in Interoperating geographic information systems Springer, Boston, MA, pp. 55-69.
  • Brodaric, B., 2017. Interoperability of Representations, in International Encyclopedia of Geography: People, the Earth, Environment and Technology (Richardson, D., Castree, N., Goodchild, M. F., Kobayashi, A., Liu, W. and Marston, R. A., Eds.) Oxford, UK: John Wiley & Sons, Ltd., pp. 1–18.
  • Brodeur, J., 2012. Geosemantic interoperability and the geospatial semantic web, In Springer Handbook of Geographic Information (Kresse, W. and Danko, D. M., Eds.), Springer, Berlin, Heidelberg, pp. 589-611.
  • Carral, D., Scheider, S., Janowicz, K., Vardeman, C., Krisnadhi, A. A. and Hitzler, P., 2013. An ontology design pattern for cartographic map scaling, 10th International Conference Proceedings, The Semantic Web: Semantics and Big Data (ESWC 2013) (Cimiano, P., Corcho, O., Presutti, V., Hollink, L. and Rudolph, S., Eds.), Heidelberg: Springer-Verlag, Montpellier, France.
  • CityGML, 2018. CityGML v3.0 homepage, https://www.citygml.org/ongoingdev/v3/, accessed on 16 March 2018.
  • Cömert, Ç., Akinci, H., Ulutaş, D., Kara, G. and Yılmaz, C., 2008. Implementing Spatial Data Infrastructures with Semantic Web Services, INSPIRE Conference 2008, Maribor, Slovenia.
  • Cömert, Ç., Ulutaş, D., Akinci, H. and Kara, G., 2010. Semantic web services for implementing national spatial data infrastructures, Scientific Research and Essays, 5(7), 685-692.
  • Delgado, F., Martínez-González, M. M. and Finat, J., 2013. An evaluation of ontology matching techniques on geospatial ontologies, International Journal of Geographical Information Science, 27, 2279–2301.
  • Euzenat, J. and Shvaiko, P., 2007. Ontology Matching, Springer, Berlin.
  • Fonseca, F. T. and Câmara, G., 2009. Geo-Ontologies, In The GIS Manual (Madden M., Ed.), ASPRS, Bethesda, Maryland, USA.
  • Friis-Christensen, A., Jensen, C. S., Nytun, J. P. and Skogan, D., 2005. A conceptual schema language for the management of multiple representations of geographic entities, Transactions in GIS, 9(3), 345–380.
  • Goodwin, J., Dolbear, C. and Hart, G., 2008. Geographical linked data: the administrative geography of Great Britain on the semantic web, Transactions in GIS, 12 (Suppl. 1), 19–30.
  • Guarino, N., 1997. Semantic matching: formal ontological distinctions for information organization, extraction, and integration, In Information Extraction A Multidisciplinary Approach to an Emerging Information Technology (Pazienza, M. T., Ed.), Springer, pp. 139–70.
  • Guarino, N., 1998. Formal ontology and information systems, In Guarino, N. (Ed.) Formal Ontology and Information Systems, Amsterdam, IOS Press, pp. 3–15.
  • Hahmann, S. and Burghardt, D., 2010. Linked data - a multiple representation database at web scale?, 13th Workshop of the ICA commission on Generalisation and Multiple Representation, Zürich, Switzerland.
  • Hakimpour, F., 2003. Using Ontologies to Resolve Semantic Heterogeneity for Integrating Spatial Database Schemata, PhD Thesis, University of Zurich, Switzerland.
  • Hart, G. and Dolbear, C., 2013. Linked Data: A Geographic Perspective, CRC Press, Boca Raton, Florida, USA.
  • Hess, G. N., Iochpe, C. and Castano, S., 2007. Geographic ontology matching with IG-MATCH, Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4605 LNCS, 185–202.
  • Horridge, M. and Brandt, S., 2011. A practical guide to building OWL ontologies using Protégé 4 and CO-ODE tools, edition 1.3, University of Manchester.
  • Hu, Y., 2017. Geospatial semantics, In Comprehensive Geographic Information Systems (Huang, B., Ed.), Elsevier, Oxford, UK.
  • Hu, Y. and Janowicz, K., 2016. Enriching top-down geo-ontologies using bottom-up knowledge mined from linked data, In Advancing Geographic Information Science: The Past and Next Twenty Years (Onsrud, H. and Kuhn, W., Eds.), GSDI Association Press, Needham, Massachusetts, USA.
  • Kavouras, M. and Kokla, M., 2007. Theories of Geographic Concepts: Ontological Approaches to Semantic Integration, CRC Press, Boca Raton, Florida, USA.
  • Khatami, R., Alesheikh, A. and Hamrah, M., 2010. A mixed approach for automated spatial ontology alignment, Journal of Spatial Science, 55 (2): 237–255.
  • Kieler, B., 2008. Semantic data integration across different scales: automatic learning generalization rules, International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 685–690.
  • Kipngenoh, K. W., 2010. Ontology Mapping for Geoinformation Integration, MSc Thesis, International Institute for Geo-information Science and Earth Observation (ITC), Netherlands.
  • Lassila, O. and Swick, R. R., 1999. Resource description framework (RDF) model and syntax specification, W3C Recommendation, W3C Consortium.
  • Löwner, M.-O., Gröger, G., Benner, J., Biljecki, F. and Nagel C., 2016. Proposal for a new LoD and multi-representation concept for CityGML, ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W1, 3–12.
  • McGuinness, D. L. and van Harmelen, F., 2004. OWL Web ontology language, W3C Recommendation 10.2004-03.
  • Memduhoglu, A. and Basaraner, M., 2017. Potential of spatial semantics for developing multi-representation spatial databases, UCTEA International Geographic Information Systems Congress 2017, 15-18 November, Adana, Turkey.
  • OAEI, 2018. Ontology Alignment Evaluation Initiative, http://oaei.ontologymatching.org/, accessed on 16 March 2018.
  • Perry, M. and Herring, J., 2012. OGC GeoSPARQL-A geographic query language for RDF data, OGC Implementation Standard.
  • Prud’hommeaux, E. and Seaborne, A., 2008. SPARQL query language for RDF, W3C Recommendation, W3C Consortium.
  • Rodríguez, M. A. and Egenhofer, M. J., 2003. Determining semantic similarity among entity classes from different ontologies, IEEE Transactions on Knowledge and Data Engineering, 15(2), 442–456.
  • Roussey, C., Pinet, F., Kang, M. A. and Corcho, O., 2011. Ontologies for interoperability, in Ontologies in Urban Development Projects (Falquet, G., Métral, C., Teller, J. and Tweed, C., Eds.), Springer, London, pp. 39-53.
  • Sikos, L. F., (Ed.), 2015. Mastering Structured Data on the Semantic Web, Apress, New York, USA.
  • Sinha, G., Mark, D. M., Kolas, D., Varanka, D. E., Romero, B. E., Feng, C.-C., Usery, E. L., Liebermann, J. and Sorokine, A., 2014. An ontology design pattern for surface water features, Proceedings of Geographic Information Science: 8th International Conference, GIScience 2014 (Duckham, M., Pebesma, E., Stewart, K. and Frank, A. U., Eds.), Springer International Publishing, Vienna, Austria, pp. 187–203.
  • Stock, K. and Cialone, C., 2011. An approach to the management of multiple aligned multilingual ontologies for a geospatial earth observation system, in Lecture Notes in Computer Science, GeoS 2011 (Claramunt, C., Levashkin, S. and Bertolotto, M., Eds.), Brest: Springer-Verlag Berlin Heidelberg, Vol. 6631 LNCS, pp. 52–69.
  • Stoter, J., Lemmens, R., Kobben, B. and Bakker, N. J., 2006. Semantic data integration in a multiple representation environment, ISPRS Workshop on Multiple Representation and Interoperability of Spatial Data, Hannover, Germany, pp. 22–29
  • Stoter, J., Visser, T., van Oosterom, P., Quak, W. and Bakker, N., 2011. A semantic-rich multi-scale information model for topography, International Journal of Geographical Information Science, 25, 739–763.
  • Tanasescu, V., 2007. Spatial semantics in difference spaces, proceedings of the International Conference on Spatial Information Theory: Foundations of Geographic Information Science (COSIT) (Winter, S., Duckham, M., Kulik, L. and Kuipers, B., Eds.), Heidelberg: Springer-Verlag, Berlin, Germany.
  • Thomson, M.-K., 2009. Dwelling on ontology - semantic reasoning over topographic maps, PhD Thesis, University of College London (UCL), Retrieved from http://eprints.ucl.ac.uk/17597/
  • Uitermark, H., Oosterom, P. V., Mars, N., and Molenaar, M., 1998. Propagating updates: Finding corresponding objects in a multi-source environment, In Proceedings of the Eighth Symposium on Spatial Data Handling, Vancouver, Canada, pp. 580–591.
  • Uitermark, H. T., van Oosterom, P., Mars, N. J. I. and Molenaar, M., 2005. Ontology-based integration of topographic data sets, International Journal of Applied Earth Observation and Geoinformation, 7 (2): 97–106.
  • Ulutaş, D., Kara, G. and Cömert, Ç., 2016. Semantic definition and matching for implementing national spatial data infrastructures, Journal of Spatial Science, 61(2), 441–459.
  • van den Brink, L., Janssen, P., Quak, W. and Stoter, J., 2014. Linking spatial data: automated conversion of geo-information models and GML data to RDF, International Journal of Spatial Data Infrastructures Research, 9, 59–85.
  • van Harmelen, F., 2008. Semantic web technologies as the foundation for the information infrastructure, Creating Spatial Information Infrastructures: Towards the Spatial Semantic Web (van Oosterom, P. and Zlatanova, S., Eds.), CRC Press, Boca Raton, Florida, USA, pp. 37-52.
  • Vangenot, C., Parent, C. and Spaccapietra, S., 2002 Modelling and manipulating multiple representations of spatial data, Advances in Spatial Data Handling: 10th International Symposium on Spatial Data Handling (Richardson, D. E. and van Oosterom, P., Eds.) Heidelberg: Springer-Verlag, Ottawa, Canada, pp. 81-93.
  • Varanka, D. E., 2009. A topographic feature taxonomy for a U.S. national topographic mapping ontology, Proceedings of the 24th International Cartographic Conference - ICC 2009, Santiago, Chile.
  • Varanka, D. E. and Usery, E. L., 2015. An applied ontology for semantics associated with surface water features, In Land Use and Land Cover Semantics: Principles, Best Practices, and Prospects (Ahlqvist, O., Varanka, D., Fritz, S. and Janowicz, K., Eds.), CRC Press, Boca Raton, Florida, USA.
  • Varol, M. B. and Şanlıoğlu, İ., 2017. Open geospatial consortium web map and feature services and free/open source server/client softwares, International Journal of Engineering and Geosciences, 2(1), 17-26.
  • Volz, S., 2005. Data-Driven Matching of Geospatial Schemas, International Conference on Spatial Information Theory, Springer Berlin Heidelberg, pp. 115–132.
  • Wang, Y. H. and Meng, H., 2009. Hierarchical ontology on multi-scale road model for cartographical application, Proceedings - 2009 International Conference on Environmental Science and Information Application Technology (ESIAT 2009), Wuhan, China, pp. 330–333.
  • Wiegand, N., Berg-Cross, G. and Zhou, N., 2015. Resolving semantic heterogeneities in land use and land cover, In Land Use and Land Cover Semantics: Principles, Best Practices, and Prospects (Ahlqvist, O., Varanka, D., Fritz, S. and Janowicz, K., Eds.), CRC Press, Boca Raton, Florida, USA.
  • Yi, S., 2013. Learning ontologies for geographic entity matching and multi-sources data fusion, 21st International Conference on Geoinformatics, Kaifeng, China, pp. 1–5.
  • Zhang, C., Zhao, T. and Li, W., 2015. Geospatial Semantic Web, Springer International Publishing, Switzerland.
Birincil Dil en
Konular Mühendislik, Ortak Disiplinler
Dergi Bölümü Articles
Yazarlar

Orcid: 0000-0002-9072-869X
Yazar: Abdulkadir Memduhoglu (Sorumlu Yazar)
Kurum: Harran University, Department of Geomatic Engineering, Division of Cartography
Ülke: Turkey


Orcid: 0000-0003-4022-4976
Yazar: Melih Basaraner
Kurum: Yildiz Technical University, Department of Geomatic Engineering, Division of Cartography
Ülke: Turkey


Bibtex @derleme { ijeg413473, journal = {International Journal of Engineering and Geosciences}, issn = {}, eissn = {2548-0960}, address = {Murat YAKAR}, year = {2018}, volume = {3}, pages = {108 - 118}, doi = {10.26833/ijeg.413473}, title = {POSSIBLE CONTRIBUTIONS OF SPATIAL SEMANTIC METHODS AND TECHNOLOGIES TO MULTI-REPRESENTATION SPATIAL DATABASE PARADIGM}, key = {cite}, author = {Basaraner, Melih and Memduhoglu, Abdulkadir} }
APA Memduhoglu, A , Basaraner, M . (2018). POSSIBLE CONTRIBUTIONS OF SPATIAL SEMANTIC METHODS AND TECHNOLOGIES TO MULTI-REPRESENTATION SPATIAL DATABASE PARADIGM. International Journal of Engineering and Geosciences, 3 (3), 108-118. DOI: 10.26833/ijeg.413473
MLA Memduhoglu, A , Basaraner, M . "POSSIBLE CONTRIBUTIONS OF SPATIAL SEMANTIC METHODS AND TECHNOLOGIES TO MULTI-REPRESENTATION SPATIAL DATABASE PARADIGM". International Journal of Engineering and Geosciences 3 (2018): 108-118 <http://dergipark.gov.tr/ijeg/issue/37203/413473>
Chicago Memduhoglu, A , Basaraner, M . "POSSIBLE CONTRIBUTIONS OF SPATIAL SEMANTIC METHODS AND TECHNOLOGIES TO MULTI-REPRESENTATION SPATIAL DATABASE PARADIGM". International Journal of Engineering and Geosciences 3 (2018): 108-118
RIS TY - JOUR T1 - POSSIBLE CONTRIBUTIONS OF SPATIAL SEMANTIC METHODS AND TECHNOLOGIES TO MULTI-REPRESENTATION SPATIAL DATABASE PARADIGM AU - Abdulkadir Memduhoglu , Melih Basaraner Y1 - 2018 PY - 2018 N1 - doi: 10.26833/ijeg.413473 DO - 10.26833/ijeg.413473 T2 - International Journal of Engineering and Geosciences JF - Journal JO - JOR SP - 108 EP - 118 VL - 3 IS - 3 SN - -2548-0960 M3 - doi: 10.26833/ijeg.413473 UR - http://dx.doi.org/10.26833/ijeg.413473 Y2 - 2018 ER -
EndNote %0 International Journal of Engineering and Geosciences POSSIBLE CONTRIBUTIONS OF SPATIAL SEMANTIC METHODS AND TECHNOLOGIES TO MULTI-REPRESENTATION SPATIAL DATABASE PARADIGM %A Abdulkadir Memduhoglu , Melih Basaraner %T POSSIBLE CONTRIBUTIONS OF SPATIAL SEMANTIC METHODS AND TECHNOLOGIES TO MULTI-REPRESENTATION SPATIAL DATABASE PARADIGM %D 2018 %J International Journal of Engineering and Geosciences %P -2548-0960 %V 3 %N 3 %R doi: 10.26833/ijeg.413473 %U 10.26833/ijeg.413473
ISNAD Memduhoglu, Abdulkadir , Basaraner, Melih . "POSSIBLE CONTRIBUTIONS OF SPATIAL SEMANTIC METHODS AND TECHNOLOGIES TO MULTI-REPRESENTATION SPATIAL DATABASE PARADIGM". International Journal of Engineering and Geosciences 3 / 3 (Ekim 2018): 108-118. http://dx.doi.org/10.26833/ijeg.413473