Yıl 2018, Cilt 21, Sayı 3, Sayfalar 144 - 156 2018-09-01

Thermodynamic Steady-State Analysis and Comparison of Compressed Air Energy Storage (CAES) Concepts

Friederike Kaiser [1] , Roman Weber [2] , Uwe Krüger [3]

109 127

Different compressed air energy storage (CAES) schemes -as options for large-scale energy storage-are compared through a thermodynamic steady-state analysis by determining the state variables based on irreversibility and real gas behaviour. Characteristic values (such as technical work, power and efficiency) of Huntorf and McIntosh plants as well as several advanced concepts under development (adiabatic, isobaric and quasi-isothermal CAES) are considered. The calculation methods are validated with a newly collected comprehensive set of measured operational data of the reference plant Huntorf making this review unique and novel. It is found that in the existing CAES plants the largest energy loss occurs during compression by inter-cooling the compressed air (around 95 %).

Thus, to enhance energy storage efficiency adiabatic and isothermal concepts are encouraged since they can lead to significantly higher values. The ambiguous energy storage efficiency of CAES is discussed in detail. The turbine conversion coefficient which in conventional gas turbines usually does not exceed 45 % or 60 % in combined cycle power plants respectively can reach in CAES turbines more than 80 %.

compressed air energy storage, CAES, thermodynamic cycle
  • A. Giramonti, R. D. Lessard, “Exploratory Evaluation of Compressed Air Storage Peak-Power Systems,” Energy Sources, 1, 283–294, 1974.
  • U.S. National Research Council. Assessment of Technology for Advanced Power Cycles: Project Report, Washington, D.C. (1977).
  • C. Borgnakke, R. C. Sonntag. Fundamentals of thermodynamics. Wiley, Hoboken, N.J, 7th ed., 2009.
  • C. Lechner, and J. Seume. Stationäre Gasturbinen. Springer, Berlin, Heidelberg, 2010.
  • H. D. Baehr, S. Kabelac. Thermodynamik: Grundlagen und technische Anwendungen. Springer-Lehrbuch. Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 14. aufl edition, 2009.
  • G. H. Weber, J. F. Weber. Thermodynamik der Energiesysteme: Konventionell - rationell - regenerativ. VDE-Verl., Berlin and Offenbach, 2010.
  • E. W. Lemmon, R. T. Jacobsen, S. G. Penoncello, D. G. Friend, “Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon, and Oxygen From 60 to 2000 K at Pressures to 2000 MPa,”J. Phys. Chem. Ref. Data, 29(3), 331–385, 2000.
  • F. Kaiser, R. Weber,U. Krüger, Thermodynamic Steady-State Analysis and Comparison of Compressed Air Energy Storage (CAES) Concepts. Working paper, 2018
  • M. Budt, D. Wolf, R. Span, J. Yan, “A review on compressed air energy storage: Basic principles, past milestones and recent developments,” Applied Energy, 170, 250–268, 2016.
  • Brown Boveri & Cie, “Huntorf Air Storage Gas Turbine Power Plant,” Energy Supply, D GK 90 202 E:2–14, 1980.
  • Brown Boveri & Cie, “Operating Experience with the Huntorf Air Storage Gas Turbine Power Station: D GK 1274 86 E. Brown Boveri Review, 73, 297–305, 1986.
  • F. Crotogino, “Druckluftspeicher-GT-Kraftwerke: Ausgleich fluktuierender Stromproduktion,“ etz elektrotechnik & automation, 5, 12–18, 2003.
  • F. Crotogino, K.-U. Mohmeyer, R. Scharf, Huntorf “CAES:More than 20 years of successful operation” ReportSpring 2001 Meeting, Orlando.
  • H. Hoffeins, D. Romeyke, F. Sütterlin, “Die Inbetriebnahme der ersten Luftspeicher-Gasturbinengruppe: Energieversorgung: Druckschrift Nr. CH GK 1139 81 D,“ Brown Boveri Mitteilungen, 67, 465–473, 1980.
  • P. Quast. The Huntorf Plant: Over 3 years operating experience with compressed air caverns. Sonderdruck KBB, Hannover, 1. Edition, 1981.
  • P. Quast, F. Crotogino, “Initial Experience with the Compressed-Air Energy Storage (CAES) Project of Northwestdeutsche Kraftwerke AG (NWK) at Huntorf/West Germany: Erste Erfahrungen beim Betrieb des Luft speicherprojektes der Nordwestdeutsche Kraftwerk AG (NWK) in Huntorf,” Erdoel-Erdgas-Zeitschrift, 95, 310–314, 1979.
  • O. Weber, “The Air-Storage Gas Turbine Power Station at Huntorf,” Brown Boveri Review, 7/8, 332–337, 1975.
  • VDI. VDI-Wärmeatlas: Mit 320 Tabellen. Springer reference. Springer Vieweg, Berlin, 11., bearb. und erw. aufl edition, 2013.
  • DVGW Deutsche Vereinigung des Gas-und Wasserfaches e. V. (Mai 2008). Arbeitsblatt G 260:Gasbeschaffenheit, Bonn.
  • S. K. Khaitan, M. Raju, “Dynamics of hydrogen powered CAES based gas turbine plant using sodium alanate storage system,” International Journal of Hydrogen Energy, 37, 18904–18914, 2012.
  • S. K. Khaitan, M. Raju, “Dynamic simulation of air storage-based gas turbine plants,” International Journal of Energy Research, 37, 558–569, 2013.
  • M. Raju, S. Kumar Khaitan, “Modeling and simulation of compressed air storage in caverns: A case study of the Huntorf plant,” Applied Energy, 89, 474–481, 2012.
  • R. Kushnir, A. Dayan, A. Ullmann, “Temperature and pressure variations within compressed air energy storage caverns,” International Journal of Heat and Mass Transfer, 55, 5616–5630, 2012a.
  • R. Kushnir, A. Ullmann, A. Dayan, “Thermodynamic and hydrodynamic response of compressed air energy storage reservoirs: a review,” Reviews in Chemical Engineering, 28,123–148, 2012b.
  • C. Xia, Y. Zhou, S. Zhou, P. Zhang, F. Wang, “A simplified and unified analytical solution for temperature and pressure variations in compressed air energy storage caverns.” Renewable Energy, 74,718–726, 2015.
  • F. Ausfelder, C. Beilmann, M. Bertau, et al. “Energiespeicherung als Element einer sicheren Energieversorgung,“ Chemie Ingenieur Technik, 87, 17–89, 2015.
  • H.-P. Beck, B. Engel, L. Hofmann, R. Menges, T. Turek, and H. Weyer, “Eignung von Speichertechnologien zum Erhalt der Systemsicherheit: Abschlussbericht,“ volume 13 of Schriftenreihe des Energie-Forschungszentrums Niedersachsen. Cuvillier Verlag, Göttingen, 2013.
  • N. Hartmann, L. Eltrop, N. Bauer, J. Salzer, S. Schwarz, and M. Schmidt. Stromspeicherpotenziale für Deutschland: Report by zfes, Universität Stuttgart, 2012.
  • L. Nielsen, “GuD-Druckluftspeicherkraftwerk mit Wärmespeicher: Promotion an der Technischen Universität Braunschweig,“ volume 14 of Schriftenreihe des Energie-Forschungszentrums Niedersachsen (EFZN). Cuvillier Verlag, Göttingen, 2013.
  • D. Wolf. “Methods for Design and Application of Adiabatic Compressed Air Energy Storage Based on Dynamic Modeling,” vol. 65 of Umsicht Schriftenreihe. Karl Maria Laufen and Laufen, Oberhausen, 1 edition, 2011.
  • J. B. Bush, J. M. Campbell, P. M. Jarvis, et al. Economic and Technical Feasability Study Of Compressed Air Storage: Final Reportprepared for U.S. Energy Research and Development Administration, Washington, D.C., 1976.
  • F. Kaiser, W. Busch, “Der beste Stromspeicher? -Pumpspeicher und die Alternativen,“ In W. Busch, and F. Kaiser, F., editors, Pumpspeicher für die Energiewende -Spitzentechnologie auf Eis?, volume34 of Schriftenreihe des Energie-Forschungszentrums Niedersachsen, pages 72–87, Göttingen. Cuvillier Verlag, 2015.
  • S. Succar, R. H. Williams. Compressed Air Energy Storage: Theory, Resources and Applications for Wind Power: Report Energy Systems Analysis Group, Princeton University, 2008.
  • B. Elmegaard, W. Brix, “Efficiency of Compressed Air Energy Storage” In The 24th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2011.
  • S. D. Garvey, “Two Novel Configurations for Compressed Air Energy Storage Exploiting High-Grade Thermal Energy Storage,” presented at UK-China Thermal Energy Storage Forum, Beijing, 2015.
  • Y.-M. Kim, J.-H. Lee, S.-J. Kim, D. Favrat, “Potential and Evolution of Compressed Air Energy Storage: Energy and Exergy Analyses,” Entropy, 14, 1501–1521, 2012.
  • W.-D. Steinmann, Thermo Mechanical Concepts For Bulk Energy Storage:Manuscript submitted for publication, personal communication, 2016. (unpublished).
  • G. Grazzini, A. Milazzo, “Thermodynamic analysis of CAES/TES systems for renewable energy plants,” Renewable Energy, 33, 1998–2006, 2008.
  • W. F. Pickard, N. J. Hansing, A. Q. Shen, “Can large-scale advanced-adiabatic compressed air energy storage be justified economically in an age of sustainable energy?” Journal of Renewable and Sustainable Energy, 1, 033102, 2009.
  • N. Hartmann, O. Vöhringer, C. Kruck, L. Eltrop, “Simulation and analysis of different adiabatic Compressed Air Energy Storage plant configurations,” Applied Energy, 93, 541–548, 2012.
  • B. Leuger, and T. Beutel, “Bewertung der Betriebserfahrungen mit der Gasspeicherkaverne Huntorf K6: Felsmechanik/Energiewende,“ mining+geo, 4:674–677, 2012.
  • P. Schwoeppe, S. Gose, R. Scholz, “Thermodynamische Betrachtungen: Chapter,“ In Dietz, P., editor, Grundlast von der Nordsee, pages 131–146. Papierflieger, Clausthal-Zellerfeld, 2008.
  • B. Bollinger. Technology Performance Report SustainX Smart Grid Program: Demonstration of Promising Energy Storage Technologies, Project Report, 2015.
  • T. McBride, A. Bell, D. Kepshire. ICAES Innovation Foam-Based Heat Exchange: SustainX, Inc. Report, 2013.
  • C. VanWalleghem. Hydrostor Activates World’s First Utility-Scale Underwater Compressed Air Energy Storage System: Press release, 2015.
  • A. J. Pimm, S. D. Garvey, R. J. Drew, “Shape and cost analysis of pressurized fabric structuresfor subsea compressed air energy storage.” In Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225, 1027–1043, 2011.
  • Z. Wang, D. S.-K. Ting, R. Carriveau, W. Xiong, Z. Wang, “Design and thermodynamic analysis of a multi-level underwater compressed air energy storage system,” Journal of Energy Storage, 5, 203–211, 2016.
  • V. C. Patil, P. I. Ro, “Energy and Exergy Analysis of Ocean Compressed Air Energy Storage Concepts,” Journal of Engineering, 2018,1–14, 2018.
Birincil Dil en
Konular Mühendislik
Dergi Bölümü Regular Original Research Article

Yazar: Friederike Kaiser (Sorumlu Yazar)
Ülke: Germany

Yazar: Roman Weber

Yazar: Uwe Krüger

Bibtex @araştırma makalesi { ijot407824, journal = {International Journal of Thermodynamics}, issn = {1301-9724}, eissn = {2146-1511}, address = {Yaşar DEMİREL}, year = {2018}, volume = {21}, pages = {144 - 156}, doi = {10.5541/ijot.407824}, title = {Thermodynamic Steady-State Analysis and Comparison of Compressed Air Energy Storage (CAES) Concepts}, key = {cite}, author = {Krüger, Uwe and Weber, Roman and Kaiser, Friederike} }
APA Kaiser, F , Weber, R , Krüger, U . (2018). Thermodynamic Steady-State Analysis and Comparison of Compressed Air Energy Storage (CAES) Concepts. International Journal of Thermodynamics, 21 (3), 144-156. DOI: 10.5541/ijot.407824
MLA Kaiser, F , Weber, R , Krüger, U . "Thermodynamic Steady-State Analysis and Comparison of Compressed Air Energy Storage (CAES) Concepts". International Journal of Thermodynamics 21 (2018): 144-156 <http://dergipark.gov.tr/ijot/issue/38992/407824>
Chicago Kaiser, F , Weber, R , Krüger, U . "Thermodynamic Steady-State Analysis and Comparison of Compressed Air Energy Storage (CAES) Concepts". International Journal of Thermodynamics 21 (2018): 144-156
RIS TY - JOUR T1 - Thermodynamic Steady-State Analysis and Comparison of Compressed Air Energy Storage (CAES) Concepts AU - Friederike Kaiser , Roman Weber , Uwe Krüger Y1 - 2018 PY - 2018 N1 - doi: 10.5541/ijot.407824 DO - 10.5541/ijot.407824 T2 - International Journal of Thermodynamics JF - Journal JO - JOR SP - 144 EP - 156 VL - 21 IS - 3 SN - 1301-9724-2146-1511 M3 - doi: 10.5541/ijot.407824 UR - http://dx.doi.org/10.5541/ijot.407824 Y2 - 2018 ER -
EndNote %0 International Journal of Thermodynamics Thermodynamic Steady-State Analysis and Comparison of Compressed Air Energy Storage (CAES) Concepts %A Friederike Kaiser , Roman Weber , Uwe Krüger %T Thermodynamic Steady-State Analysis and Comparison of Compressed Air Energy Storage (CAES) Concepts %D 2018 %J International Journal of Thermodynamics %P 1301-9724-2146-1511 %V 21 %N 3 %R doi: 10.5541/ijot.407824 %U 10.5541/ijot.407824
ISNAD Kaiser, Friederike , Weber, Roman , Krüger, Uwe . "Thermodynamic Steady-State Analysis and Comparison of Compressed Air Energy Storage (CAES) Concepts". International Journal of Thermodynamics 21 / 3 (Eylül 2018): 144-156. http://dx.doi.org/10.5541/ijot.407824