Yıl 2018, Cilt 21, Sayı 3, Sayfalar 144 - 156 2018-09-01

Thermodynamic Steady-State Analysis and Comparison of Compressed Air Energy Storage (CAES) Concepts

Friederike Kaiser [1]

20 19

Different compressed air energy storage (CAES) schemes - as options for large scale energy storage - are compared through a comprehensive thermodynamic steady-state analysis by determining the state variables based on irreversibility and real gas behavior. Characteristic values (such as technical work, power and efficiency) of Huntorf and McIntosh plants as well as several advanced concepts under development (adiabatic, isobaric and quasi-isothermal CAES) are considered. The calculation methods are validated with a newly collected comprehensive set of measured operational data of the reference plant Huntorf making this review unique and novel.

It is found that in the existing CAES plants the largest energy loss occurs during compression by inter-cooling the compressed air (around 95%). Thus, to enhance energy storage efficiency adiabatic and isothermal concepts are encouraged since they can lead to significantly higher values. The ambiguous energy storage efficiency of CAES is discussed in detail. The turbine conversion coefficient which in conventional gas turbines usually does not exceed 45% or 60% in combined cycle power plants respectively can reach in CAES turbines more then 80%. Research and development requirements have been formulated.

compressed air energy storage, CAES, thermodynamic cycle
  • [1] R. Scholz, M. Beckmann, C. Pieper, M. Muster, R. Weber, Considerations on providing the energy needs using exclusively renewable sources: Energiewende in Germany, Renewable and Sustainable Energy Reviews 35 (2014) 109{125. doi:10.1016/j.rser.2014.03.053.
  • [2] H.-P. Beck, B. Engel, L. Hofmann, R. Menges, T. Turek, H.Weyer, Eignung von Speichertechnologien zum Erhalt der Systemsicherheit: Abschlussbericht, Vol. 13 of Schriftenreihe des Energie-Forschungszentrums Niedersachsen,Cuvillier Verlag, Goettingen, 2013.
  • [3] P. D. Lund, J. Lindgren, J. Mikkola, J. Salpakari, Review of energy system exibility measures to enable high levels of variable renewable electricity, Renewable and Sustainable Energy Reviews 45 (2015) 785{807. doi:10.1016/j.rser.2015.01.057.
  • [4] F. Kaiser, W. Busch, Der beste Stromspeicher? - Pumpspeicher und die Alternativen, in: W. Busch, F. Kaiser (Eds.), Pumpspeicher fuer die Energiewende - Spitzentechnologie auf Eis?, Vol. 34 of Schriftenreihe des Energie-Forschungszentrums Niedersachsen, Cuvillier Verlag, Goettingen, 2015, pp. 72{87. doi:10.13140/RG.2.1.4341.4803.
  • [5] Assessment of Technology for Advanced Power Cycles: Project Report, Washington, D.C.
  • [6] A. Giramonti, R. D. Lessard, Exploratory Evaluation of Compressed Air Storage Peak-Power Systems, Energy Sources 1 (3) (1974) 283{294. doi: 10.1080/00908317408945926.
  • [7] C. Borgnakke, R. C. Sonntag, Fundamentals of thermodynamics, 7th Edition, Wiley, Hoboken, N.J, 2009.
  • [8] C. Lechner, J. Seume, Stationaere Gasturbinen, Springer, Berlin, Heidelberg, 2010. doi:10.1007/978-3-540-92788-4.
  • [9] H. D. Baehr, S. Kabelac, Thermodynamik: Grundlagen und technische Anwendungen, 14th Edition, Springer-Lehrbuch, Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 2009.
  • [10] G. H. Weber, J. F. Weber, Thermodynamik der Energiesysteme: Konventionell - rationell - regenerativ, VDE-Verl., Berlin, 2010.
  • [11] E. W. Lemmon, R. T. Jacobsen, S. G. Penoncello, D. G. Friend, Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon, and Oxygen From 60 to 2000 K at Pressures to 2000 MPa, J. Phys. Chem. Ref. Data 29 (3) (2000) 331{385.
  • [12] F. W. Gay, Means for storing Fuids for power generation: US Patent 2433896 (January 6, 1948).
  • [13] O. Weber, The Air-Storage Gas Turbine Power Station at Huntorf, Brown Boveri Review 7/8 (1975) 332{337.
  • [14] P. Quast, F. Crotogino, Initial Experience with the Compressed-Air Energy Storage (CAES) Project of Northwestdeutsche Kraftwerke AG (NWK) at Huntorf/West Germany: Erste Erfahrungen beim Betrieb des Luftspeicherprojektes der Nordwestdeutsche Kraftwerk AG (NWK) in Huntorf, Erdoel-Erdgas-Zeitschrift 95 (1979) 310{314.
  • [15] Brown Boveri & Cie, Huntorf Air Storage Gas Turbine Power Plant, Energy Supply D GK 90 202 E (1980) 2{14.
  • [16] H. Hoffeins, D. Romeyke, F. Suetterlin, Die Inbetriebnahme der ersten Luftspeicher-Gasturbinengruppe: Energieversorgung: Druckschrift Nr. CH GK 1139 81 D, Brown Boveri Mitteilungen 67 (8) (1980) 465{473.
  • [17] P. Quast, The Huntorf Plant: Over 3 years operating experience with compressed air caverns, 1st Edition, Sonderdruck KBB, Hannover, 1981.
  • [18] Brown Boveri & Cie, Operating Experience with the Huntorf Air Storage Gas Turbine Power Station: D GK 1274 86 E, Brown Boveri Review 73 (6) (1986) 297{305.
  • [19] F. Crotogino, K.-U. Mohmeyer, R. Scharf, Huntorf CAES: More than 20 years of successful operation: Report Spring 2001 Meeting, Orlando (15.- 18.04.2001).
  • [20] F. Crotogino, Druckluftspeicher-GT-Kraftwerke: Ausgleich fluktuierender Stromproduktion, etz elektrotechnik & automation 5 (2003) 12{18.
  • [21] M. K. Drost, F. R. Zaloudek, W. V. Loscutof, A Preliminary Study of A-CAES in Aquifers: Report prepared for the U.S. Department of Energy by Pacific Northwest Laboratory (1980).
  • [22] P. L. Hendrickson, Legal and Regulatory issues affecting Compressed Air Energy Storage: Report prepared for the U.S. Department of Energy by Pacific Northwest Laboratory (1981).
  • [23] M. J. Hobson, R. Kohanski, S. Bahadur, C. L. Driggs, D. C. James, J. C. Sangermano, J. C. Gerhardt, R. C. Hinkel, K. A. Hresko, M. K. Galola, D. Birkholz, R. Vincent, G. Hughes, H. Miller, L. McGuire, R. Williams, P. E. Chew, J. L. Nash-Webber, W. V. Loscutof, L. D. Kannberg, F. R. Zaloudek, Conceptual design and engineering studies of Adiabatic CAES with Thermal Energy Storage: Report prepared for the U.S. Department of Energy by Pacific Northwest Laboratory (1981).
  • [24] L. D. Kannberg, Advanced Concepts Second Generation CAES: Report prepared for the U.S. Department of Energy by Pacific Northwest Laboratory (1981).
  • [25] L. E. Wiles, R. A. McCann, Water Coning in Porous Media for CAES: Report prepared for the U.S. Department of Energy by Pacific Northwest Laboratory (1981).
  • [26] R. D. Allen, T. J. Doherty, A. F. Fossum, Geotechnical Issues and Guidlines for Compressed Air in Excavates Hard Rock Caverns: Report prepared for the U.S. Department of Energy by Pacific Northwest Laboratory (1982).
  • [27] R. D. Allen, T. J. Doherty, R. L. Thoms, Geotechnical Factors and Guidlines for Compressed Air in Solution Mined Salt Cavities: Report prepared for the U.S. Department of Energy by Pacific Northwest Laboratory (1982).
  • [28] R. W. Reilly, R. B. Schainker, An Economic Comparison of CAES Hardrock Salt aquifer: Report prepared for the U.S. Department of Energy by Pacific Northwest Laboratory (1982).
  • [29] L. E. Wiles, Two-Dimensional Fluid and Thermal Analysis of Dry Porous Rock Reservoirs for CAES: Report prepared for the U.S. Department of Energy by Pacific Northwest Laboratory (1982).
  • [30] F. R. Zaloudek, R. W. Reilly, An Assessment of Second Generation CAES: Report prepared for the U.S. Department of Energy by Pacific Northwest Laboratory (1982).
  • [31] J. A. Fort, CAESCAP: A Computer Code for Compressed Air Energy Storage Plant Cycle Analysis: Report prepared for the U.S. Department of Energy by Pacific Northwest Laboratory (1982).
  • [32] J. A. Fort, Thermodynamic analysis of five compressed-air energy-storage cycles: Report prepared for the U.S. Department of Energy by Pacific Northwest Laboratory (1983).
  • [33] Beckwith & Associates, Review of environmental studies and issues on compressed-air energy storage: Report prepared for the U.S. Department of Energy by Pacific Northwest Laboratory (1983).
  • [34] R. L. Erikson, Thermophysical Behavior of StPeter Sandstone Application to CAES in an Aquifer: Report prepared for the U.S. Department of Energy by Pacific Northwest Laboratory (1983).
  • [35] D. D. Hostetler, S. W. Childs, S. J. Phillips, Subsurface Monitoring of Reservoir Pressure, Temperature, Relative humidity, and Water Content at Pitsfield, Illinois: System Design: Report prepared for the U.S. Department of Energy by Pacific Northwest Laboratory (1983).
  • [36] L. D. Kannberg, Underground Energy Storage Program Annual Report: Report prepared for the U.S. Department of Energy by Pacific Northwest 1260 Laboratory (1983).
  • [37] J. O. Goodson, History of First U.S. Compressed Air Energy Storage (CAES) Plant (110-MW-26 h): Volume 1: Early CAES Development (1993).
  • [38] R. Pollak, History of First US Compressed-Air Energy Storage (CAES) Plant (110 MW, 26h): Volume 2: Construction (1994): Final Report Electric Power Research Insitute (EPRI).
  • [39] J. F. Osterle, The Thermodynamics of Compressed Air Energy Storage, Journal of Energy Resources Technology 113 (1) (1991) 7{11.
  • [40] G. Grazzini, A. Milazzo, Thermodynamic analysis of CAES/TES systems for renewable energy plants, Renewable Energy 33 (9) (2008) 1998{2006. doi:10.1016/j.renene.2007.12.003.
  • [41] B. Elmegaard, W. Brix, Efficiency of Compressed Air Energy Storage: In: The 24th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (2011).
  • [42] D. Wolf, Methods for Design and Application of Adiabatic Compressed Air Energy Storage Based on Dynamic Modeling, 1st Edition, Vol. 65 of Umsicht- Schriftenreihe, Karl Maria Laufen and Laufen, Oberhausen, 2011.
  • [43] N. Hartmann, O. Voehringer, C. Kruck, L. Eltrop, Simulation and analysis of different adiabatic Compressed Air Energy Storage plant configurations, Applied Energy 93 (2012) 541{548. doi:10.1016/j.apenergy.2011.12.007.
  • [44] W. F. Pickard, N. J. Hansing, A. Q. Shen, Can large-scale advanced adiabatic compressed air energy storage be justified economically in an age of sustainable energy?, Journal of Renewable and Sustainable Energy 1 (3) (2009) 033102. doi:10.1063/1.3139449.
  • [45] B. Castellani, A. Presciutti, M. Filipponi, A. Nicolini, F. Rossi, Experimental Investigation on the Effect of Phase Change Materials on Compressed Air Expansion in CAES Plants, Sustainability 7 (8) (2015) 9773{9786. doi:10.3390/su7089773.
  • [46] M. J. Tessier, M. C. Floros, L. Bouzidi, S. S. Narine, Exergy analysis of an adiabatic compressed air energy storage system using a cascade of phase change materials, Energy 106 (2016) 528{534. doi:10.1016/j.energy.2016.03.042.
  • [47] Y. Mazloum, H. Sayah, M. Nemer, Static and Dynamic Modeling Comparison of an Adiabatic Compressed Air Energy Storage System, J. Energy Resour. Technol. 138 (6) (2016) 062001. doi:10.1115/1.4033399.
  • [48] J. Wang, K. Lu, L. Ma, J. Wang, M. Dooner, S. Miao, J. Li, D. Wang, Overview of Compressed Air Energy Storage and Technology Development, Energies 10 (7) (2017) 991. doi:10.3390/en10070991.
  • [49] Y.-M. Kim, J.-H. Lee, S.-J. Kim, D. Favrat, Potential and Evolution of Compressed Air Energy Storage: Energy and Exergy Analyses, Entropy 14 (12) (2012) 1501{1521. doi:10.3390/e14081501.
  • [50] L. Nielsen, GuD-Druckluftspeicherkraftwerk mit Waermespeicher: Promotion an der Technischen Universitaet Braunschweig, Vol. 14 of Schriftenreihe des Energie-Forschungszentrums Niedersachsen (EFZN), Cuvillier Verlag, Goettingen, 2013.
  • [51] P. Zhao, J. Wang, Y. Dai, Thermodynamic analysis of an integrated energy system based on compressed air energy storage (CAES) system and Kalina cycle, Energy Conversion and Management 98 (2015) 161{172. doi:10.1016/j.enconman.2015.03.094.
  • [52] Y. Zhang, K. Yang, H. Hong, X. Zhong, J. Xu, Thermodynamic analysis of a novel energy storage system with carbon dioxide as working fluid, Renewable Energy 99 (2016) 682{697. doi:10.1016/j.renene.2016.07.048.
  • [53] H. Liu, Q. He, A. Borgia, L. Pan, C. M. Oldenburg, Thermodynamic analysis of a compressed carbon dioxide energy storage system using two saline aquifers at different depths as storage reservoirs, Energy Conversion and Management 127 (2016) 149{159. doi:10.1016/j.enconman.2016.08.096.
  • [54] H. Guo, Y. Xu, H. Chen, X. Zhou, Thermodynamic characteristics of a novel supercritical compressed air energy storage system, Energy Conversion and Management 115 (2016) 167{177. doi:10.1016/j.enconman.2016.01.051.
  • [55] C. Guo, L. Pan, K. Zhang, C. M. Oldenburg, C. Li, Y. Li, Comparison of compressed air energy storage process in aquifers and caverns based on the Huntorf CAES plant, Applied Energy 181 (2016) 342{356. doi:10.1016/j.apenergy.2016.08.105.
  • [56] H. Safaei Mohamadabadi, Techno-Economic Assessment of the Need for Bulk Energy Storage in Low-Carbon Electricity Systems With a Focus on Compressed Air Storage (CAES), Doctoral dissertation, University, Harvard (2015). URL http://nrs.harvard.edu/urn-3:HUL.InstRepos:14226038
  • [57] M. Budt, D. Wolf, R. Span, J. Yan, A review on compressed air energy storage: Basic principles, past milestones and recent developments, Applied Energy 170 (2016) 250{268. doi:10.1016/j.apenergy.2016.02.108.
  • [58] G. Venkataramani, P. Parankusam, V. Ramalingam, J. Wang, A review on compressed air energy storage: A pathway for smart grid and polygeneration, Renewable and Sustainable Energy Reviews 62 (2016) 895{907. doi:10.1016/j.rser.2016.05.002.
  • [59] S. Briola, P. Di Marco, R. Gabbrielli, J. Riccardi, A novel mathematical model for the performance assessment of diabatic compressed air energy storage systems including the turbomachinery characteristic curves, Applied Energy 178 (2016) 758{772. doi:10.1016/j.apenergy.2016.06.091.
  • [60] A. Odukomaiya, A. Abu-Heiba, K. R. Gluesenkamp, O. Abdelaziz, R. K. Jackson, C. Daniel, S. Graham, A. M. Momen, Thermal analysis of nearisothermal compressed gas energy storage system, Applied Energy 179(2016) 948{960. doi:10.1016/j.apenergy.2016.07.059.
  • [61] M. Raju, S. Kumar Khaitan, Modeling and simulation of compressed air storage in caverns: A case study of the Huntorf plant, Applied Energy 89 (1) (2012) 474{481. doi:10.1016/j.apenergy.2011.08.019.
  • [62] S. K. Khaitan, M. Raju, Dynamics of hydrogen powered CAES based gas turbine plant using sodium alanate storage system, International Journal of Hydrogen Energy 37 (24) (2012) 18904{18914. doi:10.1016/j.ijhydene.2012.10.004.
  • [63] S. K. Khaitan, M. Raju, Dynamic simulation of air storage-based gas turbine plants, International Journal of Energy Research 37 (6) (2013) 558{569. doi:10.1002/er.1944.
  • [64] R. Kushnir, A. Ullmann, A. Dayan, Thermodynamic and hydrodynamic response of compressed air energy storage reservoirs: a review, Reviews in Chemical Engineering 28 (2-3) (2012) 123{148. doi:10.1515/revce-2012-0006.
  • [65] R. Kushnir, A. Dayan, A. Ullmann, Temperature and pressure variations within compressed air energy storage caverns, International Journal of Heat and Mass Transfer 55 (21-22) (2012) 5616{5630. doi:10.1016/j.ijheatmasstransfer.2012.05.055.
  • [66] C. Xia, Y. Zhou, S. Zhou, P. Zhang, F. Wang, A simplified and unified analytical solution for temperature and pressure variations in compressed air energy storage caverns, Renewable Energy 74 (2015) 718{726. doi: 10.1016/j.renene.2014.08.058.
  • [67] 1370 A. Sciacovelli, Y. Li, H. Chen, Y. Wu, J. Wang, S. Garvey, Y. Ding, Dynamic simulation of Adiabatic Compressed Air Energy Storage (ACAES) plant with integrated thermal storage ? Link between components performance and plant performance, Applied Energy 185 (2017) 16{28.doi:10.1016/j.apenergy.2016.10.058.
  • [68] M. Nakhamkin, E. Swensen, R. B. Schainker, B. Mehta, CAES Plant Performanceand Economics as a Function of Underground Salt Dome Storage Transient Processes: ASME Paper, Toronto, June 1989. URL https://asmedigitalcollection.asme.org/
  • [69] A. Sharafian, M. Bahrami, Critical analysis of thermodynamic cycle modeling of adsorption cooling systems for light-duty vehicle air conditioning applications, Renewable and Sustainable Energy Reviews 48 (2015) 857{869. doi:10.1016/j.rser.2015.04.055.
  • [70] Q. Yu, X. Hao, X. Tan, Comparative study on air distribution system for piston-type compressed air engine, Advances in Mechanical Engineering 9 (4) (2017) 168781401769762. doi:10.1177/1687814017697625.
  • [71] A. Foley, I. Lobera, Impacts of compressed air energy storage plant on an electricity market with a large renewable energy portfolio, Energy 57 (2013) 85{94. doi:10.1016/j.energy.2013.04.031.
  • [72] P. Radgen, 30 Years of Compressed Air Energy Storage Plant Huntorf: Experiences and Outlook (2008).
  • [73] VDI, VDI-Waermeatlas: Mit 320 Tabellen, 11th Edition, Springer reference, Springer Vieweg, Berlin, 2013.
  • [74] S. Krichel, S. Huelsmann, S. Hirzel, R. Elsland, O. Sawodny, Mehr Klarheit bei der Druckluft: Exergieflussdiagramme als neue Grundlage fuer Effizienzbetrachtungen bei Druckluftanlagen, Oelhydraulik und Pneumatik 1-2 (2012) 28{32.
  • [75] DVGW Deutsche Vereinigung des Gas- und Wasserfaches e. V., Arbeitsblatt G 260: Gasbeschaffenheit, Bonn (Mai 2008).
  • [76] F. Ausfelder, C. Beilmann, M. Bertau, S. Braeuninger, A. Heinzel, R. Hoer, 1400 W. Koch, F. Mahlendorf, A. Metzelthin, M. Peuckert, L. Plass, K. Raeuchle, M. Reuter, G. Schaub, S. Schiebahn, E. Schwab, F. Schueth, D. Stolten, G. Tefimer, K. Wagemann, K.-F. Ziegahn, Energiespeicherung als Element einer sicheren Energieversorgung, Chemie Ingenieur Technik 87 (1-2) (2015) 17{89. doi:10.1002/cite.201400183.
  • [77] N. Hartmann, L. Eltrop, N. Bauer, J. Salzer, S. Schwarz, M. Schmidt, Stromspeicherpotenziale fur Deutschland: Report by zfes, Universitaet Stuttgart, 2012.
  • [78] J. B. Bush, J. M. Campbell, P. M. Jarvis, D. A. Plionis, P. A. Aamodt, R. D. Anderson, J. L. Ash, A. S. Mitchell, L. A. Rives, G. A. Englesson, E. J. Sosnowicz, Economic and Technical Feasability Study Of Compressed Air Storage: Final Report prepared for U.S. Energy Research and Development Administration, Washington, D.C. (1976).
  • [79] S. Succar, R. H. Williams, Compressed Air Energy Storage: Theory, Resources and Applications for Wind Power: Report Energy Systems Analysis Group, Princeton University (2008).
  • [80] S. D. Garvey, Two Novel Configurations for Compressed Air Energy Storage Exploiting High-Grade Thermal Energy Storage: presented at UKChina Thermal Energy Storage Forum, Beijing (2015).
  • [81] W.-D. Steinmann, Thermo Mechanical Concepts For Bulk Energy Storage: Manuscript submitted for publication, personal communication 2016, (unpublished).
  • [82] P. Moser, R. Marquardt, S. Freund, M. Klafki, P. Pijanovic, Adiabater Druckluftspeicher fuer die Elektrizitaetsversorgung { Der naechste Schritt: ADELE-ING, in: M. Beckmann, A. Hurtado (Eds.), Kraftwerkstechnik, 1425 Vol. 4, TK Verlag, Neuruppin, 2012, pp. 803{813.
  • [83] S. Zunft, Adiabatic CAES: The ADELE-ING project: Presentation at SCCER Heat and Electricity Storage Symposium, PSI, Villigen (CH), May 5, 2015.
  • [84] S. Zunft, Druckluft- statt Pumpspeicher: Projektschau ADELE 1430 (24.10.2013). URL http://forschung-energiespeicher.info/projektschau/gesamtliste/projekt-einzelansicht/95/Druckluft_statt_Pumpspeicher/
  • [85] ADELE - Der adiabate Druckluftspeicher fuer die Elektrizitaetsversorgung: Project Brochure RWE Power AG, Essen/Koeln (January 2010).
  • [86] S. Zunft, M. Krueger, V. Dreissigacker, P.-M. Mayer, C. Niklasch, C. Bertsch, Adiabate Druckluftspeicher fur die Elektrizitaetsversogung: der ADELE Warmespeicher, in: M. Beckmann, A. Hurtado (Eds.), Kraftwerkstechnik,Vol. 4, TK Verlag, Neuruppin, 2012, pp. 749{757.
  • [87] D. Laing, T. Bauer, N. Breidenbach, B. Hachmann, M. Johnson, Development of high temperature phase-change-material storages, Applied Energy 109 (2013) 497{504. doi:10.1016/j.apenergy.2012.11.063.
  • [88] W.-D. Steinmann, The CHEST (Compressed Heat Energy STorage) concept for facility scale thermo mechanical energy storage, Energy 69 (2014) 543{552. doi:10.1016/j.energy.2014.03.049.
  • [89] L. Nielsen, D. Qi, N. Brinkmeier, R. Leithner, Druckluftspeicherkraftwerk zur Netzintegration erneuerbarer Energien ISACOAST-CC: Presentation: Dezentralisierung und Netzausbau (22.-23.03.2012).
  • [90] N. Oldhafer, M. Dueren, S. Stenger, R. Leithner, Druckluftspeicherkraftwerk als Kurzzeitspeicher- Langzeitspeicher- und Schattenkraftwerk, in: M. Beckmann (Ed.), Kraftwerkstechnik 2014, SAXONIA, Standortentwicklungs- und -verwaltungsgesellschaft, Freiberg, 2014, pp. 1{10.
  • [91] R. Leithner, Druckluftspeicherkraftwerke: Vortrag am Institut fuer Kraftwerkstechnik und Waermeuebertragung an der Leibnitz Universitaet Hannover (20.01.2015).
  • [92] P. Schwoeppe, S. Gose, R. Scholz, Thermodynamische Betrachtungen: Chapter, in: P. Dietz (Ed.), Grundlast von der Nordsee, Papierflieger, Clausthal-Zellerfeld, 2008, pp. 131{146.
  • [93] B. Leuger, T. Beutel, Bewertung der Betriebserfahrungen mit der Gasspeicherkaverne Huntorf K6: Felsmechanik/Energiewende, mining+geo 4 (2012) 674{677. [94] T. McBride, A. Bell, D. Kepshire, ICAES Innovation Foam-Based Heat Exchange: SustainX, Inc. Report (2013).
  • [95] B. Bollinger, Technology Performance Report SustainX Smart Grid Program: Demonstration of Promising Energy Storage Technologies, Project Report (2015).
  • [96] C. VanWalleghem, Hydrostor Activates World's First Utility-Scale Underwater Compressed Air Energy Storage System: Press release (2015-11-18). URL http://www.hydrostor.ca/
  • [97] A. J. Pimm, S. D. Garvey, R. J. Drew, Shape and cost analysis of pressurized fabric structures for subsea compressed air energy storage, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 225 (5) (2011) 1027{1043. doi: 10.1177/0954406211399506.
  • [98] Z. Wang, D. S.-K. Ting, R. Carriveau, W. Xiong, Z. Wang, Design and thermodynamic analysis of a multi-level underwater compressed air energy storage system, Journal of Energy Storage 5 (2016) 203{211. doi:10.1016/j.est.2016.01.002.
Birincil Dil en
Konular Mühendislik ve Temel Bilimler
Dergi Bölümü Regular Original Research Article
Yazarlar

Orcid: 0000-0001-8022-5768
Yazar: Friederike Kaiser (Sorumlu Yazar)
Ülke: Germany


Bibtex @araştırma makalesi { ijot407824, journal = {International Journal of Thermodynamics}, issn = {1301-9724}, eissn = {2146-1511}, address = {Yaşar DEMİREL}, year = {2018}, volume = {21}, pages = {144 - 156}, doi = {10.5541/ijot.407824}, title = {Thermodynamic Steady-State Analysis and Comparison of Compressed Air Energy Storage (CAES) Concepts}, key = {cite}, author = {Kaiser, Friederike} }
APA Kaiser, F . (2018). Thermodynamic Steady-State Analysis and Comparison of Compressed Air Energy Storage (CAES) Concepts. International Journal of Thermodynamics, 21 (3), 144-156. DOI: 10.5541/ijot.407824
MLA Kaiser, F . "Thermodynamic Steady-State Analysis and Comparison of Compressed Air Energy Storage (CAES) Concepts". International Journal of Thermodynamics 21 (2018): 144-156 <http://dergipark.gov.tr/ijot/issue/38992/407824>
Chicago Kaiser, F . "Thermodynamic Steady-State Analysis and Comparison of Compressed Air Energy Storage (CAES) Concepts". International Journal of Thermodynamics 21 (2018): 144-156
RIS TY - JOUR T1 - Thermodynamic Steady-State Analysis and Comparison of Compressed Air Energy Storage (CAES) Concepts AU - Friederike Kaiser Y1 - 2018 PY - 2018 N1 - doi: 10.5541/ijot.407824 DO - 10.5541/ijot.407824 T2 - International Journal of Thermodynamics JF - Journal JO - JOR SP - 144 EP - 156 VL - 21 IS - 3 SN - 1301-9724-2146-1511 M3 - doi: 10.5541/ijot.407824 UR - http://dx.doi.org/10.5541/ijot.407824 Y2 - 2018 ER -
EndNote %0 International Journal of Thermodynamics Thermodynamic Steady-State Analysis and Comparison of Compressed Air Energy Storage (CAES) Concepts %A Friederike Kaiser %T Thermodynamic Steady-State Analysis and Comparison of Compressed Air Energy Storage (CAES) Concepts %D 2018 %J International Journal of Thermodynamics %P 1301-9724-2146-1511 %V 21 %N 3 %R doi: 10.5541/ijot.407824 %U 10.5541/ijot.407824
ISNAD Kaiser, Friederike . "Thermodynamic Steady-State Analysis and Comparison of Compressed Air Energy Storage (CAES) Concepts". International Journal of Thermodynamics 21 / 3 (Eylül 2018): 144-156. http://dx.doi.org/10.5541/ijot.407824