Yıl 2009, Cilt 24, Sayı 2, Sayfalar 88 - 97 2014-08-16

Positron emission tomography and radiotherapy treatment planning
Pozitron emisyon tomografi ve radyoterapi tedavi planlama

Bayram DEMİR [1] , Murat OKUTAN [2] , Mustafa DEMİR [3]

436 740

Positron emission tomography (PET) is a radioisotope imaging method for obtaining information on the status of organs and metabolisms within the human body. The imaging principle used in PET is the coincidence detection of two 511 KeV annihilation photons-originated electron-positron annihilation. In practice, a radiopharmaceutical (e.g., F-18-FDG) obtained by uniting a positron emitter radioisotope (e.g., C-11, N-13, O-15, F-18) and glucose molecule is given to the patient by way of blood injection. PET detects these 511 KeV annihilation photons accumulated in the abnormal structures and then three-dimensional imaging of the body is created by the computer. In this review of the imaging principle of PET, scintillation crystals, PET radioisotopes and PET for radiotherapy treatment planning are discussed.
Pozitron emisyon tomografi (PET), insan vücudundaki organlar ve metabolizmaların görüntülenmesini sağlayan bir radyoizotop görüntüleme tekniğidir. Görüntüleme ilkesi olarak pozitronun-elektron yok olma olayı sonucunda ortaya çıkan iki adet 511 KeV enerjili yok olma fotonun eş zamanlı deteksiyonu kullanılmaktadır. Uygulamada C-11, N-13, O-15, F-18 gibi pozitron yayınlayan radyoizotopların glikoz molekülü ile birleştirilmesi sonucu elde edilen radyofarmasötik (örneğin; F-18-FDG) hastaya kan yolu ile verilir. Vücuttaki anormal yapılarda biriken bu radyofarmasötikten elde edilen 511 KeV fotonları PET cihazında algılanarak bilgisayarda vücudun 3-boyutlu görüntüsü elde edilmektedir. Bu yazıda, PET'in temel çalışma ilkesi, PET sintilasyon kristalleri, PET radyoizotopları ve radyoterapi tedavi planlamada PET hakkında bilgiler verilecektir.
Biyolojik target volüm, pozitron-elektron yokolması, pozitron emisyon tomografi, radyoterapi tedavi planlama
  • 1. Hounsfield GN. Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol 1973;46(552):1016-22.
  • 2. Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM. Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med 1975;16(3):210-24.
  • 3. Humm JL, Rosenfeld A, Del Guerra A. From PET detectors to PET scanners. Eur J Nucl Med Mol Imaging 2003;30(11):1574-97.
  • 4. Moses WW. Trends in PET Imaging. Nuclear Instruments and Methods in Physics Research A 2001;471:209-14.
  • 5. Kuntner C, Auffray E, Bellotto D, Dujardin C, Grumbach N, Kamenskikh IA, et al. Advances in the scintillation performance of LuYAP:Ce single crystals. Nuclear Instruments and Methods in Physics Research A 2005;537:295-301.
  • 6. Krane SK. Nükleer Fizik-I. Çeviri Editörü, fiarer B. Palme Yay›nc›l›k: 2001. s. 174.
  • 7. Levin SC, Hoffman E. Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Physics in Medicine and Biology 1999;44:781-99.
  • 8. Lopes MI, Chepel V. Detectors for medical radioisotope imagine: demands and rerspectives. Radiation Physics and Chemistry 2004;71:683-92.
  • 9. Demir M. Nükleer T›p Fizi¤i. Bayrak Ofset Matbaac›l›k; ‹stanbul: 2008. 10. Melcher CL. Scintillation crystals for PET. J Nucl Med 2000;41(6):1051-5.
  • 11. Ericsson L, Townsend D, Erikson M, Melcher C, Schmand M, Bendriem B, et al. Experience with scintillators for PET: Towards the fifth generation of PET scanners. Nuclear Instruments and Methods in Physics Research A 2004;525:242-8.
  • 12. Trummera J, Auffraya E, Lecoqa P, Petrosyanb A, Sempere-Roldana P. Comparison of LuAP and LuYAP crystal properties from statistically significant batches produced with two different growth methods. Nuclear Instruments and Methods in Physics Research A 2005;551:339-51.
  • 13. Saha GB, MacIntyre WJ, Go RT. Cyclotrons and positron emission tomography radiopharmaceuticals for clinical imaging. Semin Nucl Med 1992;22(3):150-61.
  • 14. Volkovitsky P, Gilliam DM. Possible PET isotopes production using linear deuteron acceleretors. Nuclear Instruments and Methods in Physics Research A 2005;548:571-3.
  • 15.Robert AD, Daniel LC, Nickles RJ. A high pover target for the production of [18F] fluoride. Nuclear Instruments and Methods in Physics Research B 1995;99:797-9.
  • 16. Lagunas-Solar Manuel C, Carvacho OF. Cyclotron production of PET radionuclides: No-carrier-added Fluorine-18 with High-energy protons on natural neon gas targets. Appl Radiat Isot 1995;46(9):833-8.
  • 17. Maiti DK, Chakraborty PK, Chugani DC, Muzik O, Mangner TJ, Chugani HT. Synthesis procedure for routine production of [carbonyl-11C]desmethyl-WAY- 100635. Appl Radiat Isot 2005;62(5):721-7.
  • 18. Schlyer DJ. PET tracers and radiochemistry. Ann Acad Med Singapore 2004;33(2):146-54.
  • 19.International Commission on Radiation Units and Measurements (ICRU), Prescribing, Recording and Reporting Photon Beam Therapy (Report 50).
  • 20.International Commission on Radiation Units and Measurements (ICRU), Prescribing, Recording and Reporting Photon Beam Therapy (Report 62).
  • 21. Acker MR, Burrell SC. Utility of 18F-FDG PET in evaluating cancers of lung. J Nucl Med Technol 2005;33(2):69-74; quiz 75-7.
  • 22. Delbeke D, Vitola JV, Sandler MP, Arildsen RC, Powers TA, Wright JK Jr, et al. Staging recurrent metastatic colorectal carcinoma with PET. J Nucl Med 1997;38(8):1196-201.
  • 23. Hoh CK, Glaspy J, Rosen P, Dahlbom M, Lee SJ, Kunkel L, et al. Whole-body FDG-PET imaging for staging of Hodgkin’s disease and lymphoma. J Nucl Med 1997;38(3):343-8.
  • 24. Steinert HC, Huch Böni RA, Buck A, Böni R, Berthold T, Marincek B, et al. Malignant melanoma: staging with whole-body positron emission tomography and 2-[F-18]-fluoro-2-deoxy-D-glucose. Radiology 1995;195(3):705-11.
  • 25.Rosen EL, Eubank WB, Mankoff DA. FDG PET, PET/CT, and breast cancer imaging. Radiographics 2007;27 Suppl 1:S215-29. 26.Crippa F, Gerali A, Alessi A, Agresti R, Bombardie E. FDG-PET for axillary lymph node staging in primary breast cancer. Eur J Nucl Med Mol Imaging 2004;31 Suppl 1:S97-102.
  • 27. Lonneux M. Current applications and future developments of positron emission tomography in head and neck cancer. [Article in French] Cancer Radiother 2005;9(1):8-15. [Abstract]
  • 28.Reinhardt MJ, Ehritt-Braun C, Vogelgesang D, Ihling C, Högerle S, Mix M, et al. Metastatic lymph nodes in patients with cervical cancer: detection with MR imaging and FDG PET. Radiology 2001;218(3):776- 82.
  • 29. Elliott A. Medical imaging. Nuclear Instruments and Methods in Physics Research A 2005;546:1-13.
  • 30. Nestle U, Weber W, Hentschel M, Grosu AL. Biological imaging in radiation therapy: role of positron emission tomography. Phys Med Biol 2009;54(1):R1-25.
  • 31.Bentzen SM. Radiation therapy: intensity modulated, image guided, biologically optimized and evidence based. Radiother Oncol 2005;77(3):227-30.
  • 32.Bradley J, Thorstad WL, Mutic S, Miller TR, Dehdashti F, Siegel BA, et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2004;59(1):78-86.
  • 33. Tanderup K, Olsen DR, Grau C. Dose painting: art or science? Radiother Oncol 2006;79(3):245-8.
  • 34. Ling CC, Humm J, Larson S, Amols H, Fuks Z, Leibel S, et al. Towards multidimensional radiotherapy (MDCRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 2000;47(3):551-60.
  • 35. Yu CX, Amies CJ, Svatos M. Planning and delivery of intensity-modulated radiation therapy. Med Phys 2008;35(12):5233-41.
  • 36. Hebert ME, Lowe VJ, Hoffman JM, Patz EF, Anscher MS. Positron emission tomography in the pretreatment evaluation and follow-up of non-small cell lung cancer patients treated with radiotherapy: preliminary findings. Am J Clin Oncol 1996;19(4):416-21.
  • 37. Mac Manus MP, Hicks RJ, Ball DL, Kalff V, Matthews JP, Salminen E, et al. F-18 fluorodeoxyglucose positron emission tomography staging in radical radiotherapy candidates with nonsmall cell lung carcinoma: powerful correlation with survival and high impact on treatment. Cancer 2001;92(4):886-95.
  • 38. Greco C, Rosenzweig K, Cascini GL, Tamburrini O. Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC). Lung Cancer 2007;57(2):125-34.
  • 39. Grosu AL, Piert M, Weber WA, Jeremic B, Picchio M, Schratzenstaller U, et al. Positron emission tomography for radiation treatment planning. Strahlenther Onkol 2005;181(8):483-99.
  • 40.Ciernik IF, Dizendorf E, Baumert BG, Reiner B, Burger C, Davis JB, et al. Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys 2003;57(3):853-63.
  • 41. Gillies JM, Prenant C, Chimon GN, Smethurst GJ, Dekker BA, Zweit J. Microfluidic technology for PET radiochemistry. Appl Radiat Isot 2006;64(3):333-6.
  • 42. Macapinlac HA. Clinical applications of positron emission tomography/computed tomography treatment planning. Semin Nucl Med 2008;38(2):137-40.
  • 43. Halpern BS, Dahlbom M, Quon A, Schiepers C, Waldherr C, Silverman DH, et al. Impact of patient weight and emission scan duration on PET/CT image quality and lesion detectability. J Nucl Med 2004;45(5):797-801.
  • 44. Pönisch F, Richter C, Just U, Enghardt W. Attenuation correction of four dimensional (4D) PET using phasecorrelated 4D-computed tomography. Phys Med Biol 2008;53(13):N259-68.
  • 45. Park SJ, Ionascu D, Killoran J, Mamede M, Gerbaudo VH, Chin L, et al. Evaluation of the combined effects of target size, respiratory motion and background activity on 3D and 4D PET/CT images. Phys Med Biol 2008;53(13):3661-79.
Birincil Dil tr
Konular
Dergi Bölümü Makaleler
Yazarlar

Yazar: Bayram DEMİR
E-posta:

Yazar: Murat OKUTAN
E-posta:

Yazar: Mustafa DEMİR
E-posta:

Bibtex @ { iuonkder12158, journal = {Türk Onkoloji Dergisi}, issn = {1300-7467}, address = {İstanbul Üniversitesi}, year = {2014}, volume = {24}, pages = {88 - 97}, doi = {}, title = {Pozitron emisyon tomografi ve radyoterapi tedavi planlama}, key = {cite}, author = {DEMİR, Mustafa and OKUTAN, Murat and DEMİR, Bayram} }
APA DEMİR, B , OKUTAN, M , DEMİR, M . (2014). Pozitron emisyon tomografi ve radyoterapi tedavi planlama. Türk Onkoloji Dergisi, 24 (2), 88-97. Retrieved from http://dergipark.gov.tr/iuonkder/issue/1074/12158
MLA DEMİR, B , OKUTAN, M , DEMİR, M . "Pozitron emisyon tomografi ve radyoterapi tedavi planlama". Türk Onkoloji Dergisi 24 (2014): 88-97 <http://dergipark.gov.tr/iuonkder/issue/1074/12158>
Chicago DEMİR, B , OKUTAN, M , DEMİR, M . "Pozitron emisyon tomografi ve radyoterapi tedavi planlama". Türk Onkoloji Dergisi 24 (2014): 88-97
RIS TY - JOUR T1 - Pozitron emisyon tomografi ve radyoterapi tedavi planlama AU - Bayram DEMİR , Murat OKUTAN , Mustafa DEMİR Y1 - 2014 PY - 2014 N1 - DO - T2 - Türk Onkoloji Dergisi JF - Journal JO - JOR SP - 88 EP - 97 VL - 24 IS - 2 SN - 1300-7467- M3 - UR - Y2 - 2018 ER -
EndNote %0 Türk Onkoloji Dergisi Pozitron emisyon tomografi ve radyoterapi tedavi planlama %A Bayram DEMİR , Murat OKUTAN , Mustafa DEMİR %T Pozitron emisyon tomografi ve radyoterapi tedavi planlama %D 2014 %J Türk Onkoloji Dergisi %P 1300-7467- %V 24 %N 2 %R %U