Yıl 2018, Cilt 5, Sayı 3, Sayfalar 143 - 151 2018-10-08

New extremal singly even self-dual codes of lengths 64 and 66

Damyan Anev [1] , Masaaki Harada [2] , Nikolay Yankov [3]

10 18

For lengths $64$ and $66$, we construct six and seven extremal singly even self-dual codes with weight enumerators for which no extremal singly even self-dual codes were previously known to exist, respectively. We also construct new $40$ inequivalent extremal doubly even self-dual $[64,32,12]$ codes with covering radius $12$ meeting the Delsarte bound. These new codes are constructed by considering four-circulant codes along with their neighbors and shadows.
Self-dual code, Weight enumerator
  • [1] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language, J. Symb. Comput. 24(3–4) (1997) 235–265.
  • [2] I. Bouyukliev, "About the code equivalence" in Advances in Coding Theory and Cryptology, NJ, Hackensack: World Scientific, 2007.
  • [3] R. A. Brualdi, V. S. Pless, Weight enumerators of self–dual codes, IEEE Trans. Inform. Theory 37(4) (1991) 1222–1225.
  • [4] N. Chigira, M. Harada, M. Kitazume, Extremal self-dual codes of length 64 through neighbors and covering radii, Des. Codes Cryptogr. 42(1) (2007) 93–101.
  • [5] P. Çomak, J. L. Kim, F. Özbudak, New cubic self–dual codes of length 54; 60 and 66, Appl. Algebra Engrg. Comm. Comput. 29(4) (2018) 303–312.
  • [6] J. H. Conway, N. J. A. Sloane, A new upper bound on the minimal distance of self–dual codes, IEEE Trans. Inform. Theory 36(6) (1990) 1319–1333.
  • [7] S. T. Dougherty, T. A. Gulliver, M. Harada, Extremal binary self–dual codes, IEEE Trans. Inform. Theory 43(6) (1997) 2036–2047.
  • [8] M. Harada, T. Nishimura, R. Yorgova, New extremal self–dual codes of length 66, Math. Balkanica (N.S.) 21(1–2) (2007) 113–121.
  • [9] S. Karadeniz, B. Yildiz, New extremal binary self–dual codes of length 66 as extensions of self–dual codes over $R_k$, J. Franklin Inst. 350(8) (2013) 1963–1973.
  • [10] A. Kaya, New extremal binary self–dual codes of lengths 64 and 66 from $R_2$–lifts, Finite Fields Appl. 46 (2017) 271–279.
  • [11] A. Kaya, B. Yildiz, A. Pasa, New extremal binary self–dual codes from a modified four circulant construction, Discrete Math. 339(3) (2016) 1086–1094.
  • [12] A. Kaya, B. Yildiz, I. Siap, New extremal binary self–dual codes from F4 + uF4–lifts of quadratic circulant codes over F4, Finite Fields Appl. 35 (2015) 318–329.
  • [13] E. M. Rains, Shadow bounds for self–dual codes, IEEE Trans. Inform. Theory 44(1) (1998) 134–139.
  • [14] H.-P. Tsai, Existence of certain extremal self–dual codes, IEEE Trans. Inform. Theory 38(2) (1992) 501–504.
  • [15] H.-P. Tsai, Extremal self–dual codes of lengths 66 and 68, IEEE Trans. Inform. Theory 45(6) (1999) 2129–2133.
  • [16] N. Yankov, Self–dual [62; 31; 12] and [64; 32; 12] codes with an automorphism of order 7, Adv. Math. Commun. 8(1) (2014) 73–81.
  • [17] N. Yankov, M. H. Lee, M. Gürel, M. Ivanova, Self–dual codes with an automorphism of order 11, IEEE Trans. Inform. Theory 61(3) (2015) 1188–1193.
  • [18] N. Yankov, M. Ivanova, M. H. Lee, Self–dual codes with an automorphism of order 7 and s–extremal codes of length 68, Finite Fields Appl. 51 (2018) 17–30.
Birincil Dil en
Konular Mühendislik
Dergi Bölümü Makaleler
Yazarlar

Orcid: 0000-0002-3175-0168
Yazar: Damyan Anev

Orcid: 0000-0002-2748-6456
Yazar: Masaaki Harada (Sorumlu Yazar)

Orcid: 0000-0003-3703-5867
Yazar: Nikolay Yankov

Bibtex @araştırma makalesi { jacodesmath458601, journal = {Journal of Algebra Combinatorics Discrete Structures and Applications}, issn = {}, eissn = {2148-838X}, address = {Yıldız Teknik Üniversitesi}, year = {2018}, volume = {5}, pages = {143 - 151}, doi = {10.13069/jacodesmath.458601}, title = {New extremal singly even self-dual codes of lengths 64 and 66}, key = {cite}, author = {Yankov, Nikolay and Harada, Masaaki and Anev, Damyan} }
APA Anev, D , Harada, M , Yankov, N . (2018). New extremal singly even self-dual codes of lengths 64 and 66. Journal of Algebra Combinatorics Discrete Structures and Applications, 5 (3), 143-151. DOI: 10.13069/jacodesmath.458601
MLA Anev, D , Harada, M , Yankov, N . "New extremal singly even self-dual codes of lengths 64 and 66". Journal of Algebra Combinatorics Discrete Structures and Applications 5 (2018): 143-151 <http://dergipark.gov.tr/jacodesmath/issue/16096/458601>
Chicago Anev, D , Harada, M , Yankov, N . "New extremal singly even self-dual codes of lengths 64 and 66". Journal of Algebra Combinatorics Discrete Structures and Applications 5 (2018): 143-151
RIS TY - JOUR T1 - New extremal singly even self-dual codes of lengths 64 and 66 AU - Damyan Anev , Masaaki Harada , Nikolay Yankov Y1 - 2018 PY - 2018 N1 - doi: 10.13069/jacodesmath.458601 DO - 10.13069/jacodesmath.458601 T2 - Journal of Algebra Combinatorics Discrete Structures and Applications JF - Journal JO - JOR SP - 143 EP - 151 VL - 5 IS - 3 SN - -2148-838X M3 - doi: 10.13069/jacodesmath.458601 UR - http://dx.doi.org/10.13069/jacodesmath.458601 Y2 - 2018 ER -
EndNote %0 Journal of Algebra Combinatorics Discrete Structures and Applications New extremal singly even self-dual codes of lengths 64 and 66 %A Damyan Anev , Masaaki Harada , Nikolay Yankov %T New extremal singly even self-dual codes of lengths 64 and 66 %D 2018 %J Journal of Algebra Combinatorics Discrete Structures and Applications %P -2148-838X %V 5 %N 3 %R doi: 10.13069/jacodesmath.458601 %U 10.13069/jacodesmath.458601
ISNAD Anev, Damyan , Harada, Masaaki , Yankov, Nikolay . "New extremal singly even self-dual codes of lengths 64 and 66". Journal of Algebra Combinatorics Discrete Structures and Applications 5 / 3 (Ekim 2018): 143-151. http://dx.doi.org/10.13069/jacodesmath.458601