Multivariate asymptotic analysis of set partitions: Focus on blocks of fixed size

Guy Louchard [1]

72 134

Using the Saddle point method and multiseries expansions, we obtain from the exponential formula and Cauchy's integral formula, asymptotic results for the number $T(n,m,k)$ of partitions of $n$ labeled objects with $m$ blocks of fixed size $k$. We analyze the central and non-central region. In the region $m=n/k-n^\al,\quad 1>\al>1/2$, we analyze the dependence of $T(n,m,k)$ on $\al$. This paper fits within the framework of Analytic Combinatorics.
Set partitions, Bell numbers, Asymptotics, Saddle point method, Multiseries expansions, Analytic combinatorics
  • [1] B. Chern, P. Diaconis, D. M. Kane, R. C. Rhoades, Closed expressions for set partition statistics, Res. Math. Sci. 1(2) (2014) 1–32.
  • [2] B. Chern, P. Diaconis, D. M. Kane, R. C. Rhoades, Central limit theorems for some set partitions, Adv. Appl. Math. 70 (2015) 92–105.
  • [3] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, D. E. Knuth, On the LambertW function, Adv. Comput. Math. 5 (1996) 329–359.
  • [4] P. Flajolet, R. Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009.
  • [5] B. Fristedt, The structure of random partitions of large sets, Technical report, University of Minnesota, 1987.
  • [6] I. J. Good, Saddle–point methods for the multinomial distribution, Ann. Math. Statist. 28(4) (1957) 861–881.
  • [7] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, Second Edition, Addison Wesley, 1994.
  • [8] H. K. Hwang, On convergence rates in the central limit theorems for combinatorial structures, European J. Combin. 19(3) (1998) 329–343.
  • [9] D. E. Knuth, The Art of Computer Programming, vol. 4a: Combinatorial Algorithms. Part I, Addison–Wesley, Upper Saddle River, New Jersey, 2011.
  • [10] G. Louchard, Asymptotics of the Stirling numbers of the first kind revisited: A saddle point approach, Discrete Math. Theor. Comput. Sci. 12(2) (2010) 167–184.
  • [11] G. Louchard, Asymptotics of the Stirling numbers of the second kind revisited: A saddle point approach, Appl. Anal. Discrete Math. 7(2) (2013) 193–210.
  • [12] G. Louchard, Asymptotics of the Eulerian numbers revisited: A large deviation analysis, Online J. Anal. Comb. 10 (2015) 1–11.
  • [13] T. Mansour, Combinatorics of Set Partitions, Discrete Mathematics and Its Applications Series, CRC Press, Boca Raton, FL, 2013.
  • [14] B. Salvy, J. Shackell, Symbolic asymptotics: Multiseries of inverse functions, J. Symbolic Comput. 20(6) (1999) 543–563.
  • [15] R. P. Stanley, Enumerative Combinatorics, Volume 1, 2nd edn, Cambridge Studies in Advanced Mathematics, Vol. 49. Cambridge University Press, Cambridge, 2012.
Konular Mühendislik ve Temel Bilimler
Dergi Bölümü Makaleler
Yazarlar

Yazar: Guy Louchard

Bibtex @araştırma makalesi { jacodesmath284565, journal = {Journal of Algebra Combinatorics Discrete Structures and Applications}, issn = {}, eissn = {2148-838X}, address = {Yıldız Teknik Üniversitesi}, year = {}, volume = {4}, pages = {75 - 91}, doi = {10.13069/jacodesmath.37019}, title = {Multivariate asymptotic analysis of set partitions: Focus on blocks of fixed size}, key = {cite}, author = {Louchard, Guy} }
APA Louchard, G . (). Multivariate asymptotic analysis of set partitions: Focus on blocks of fixed size. Journal of Algebra Combinatorics Discrete Structures and Applications, 4 (1), 75-91. DOI: 10.13069/jacodesmath.37019
MLA Louchard, G . "Multivariate asymptotic analysis of set partitions: Focus on blocks of fixed size". Journal of Algebra Combinatorics Discrete Structures and Applications 4 (): 75-91 <http://dergipark.gov.tr/jacodesmath/issue/27044/284565>
Chicago Louchard, G . "Multivariate asymptotic analysis of set partitions: Focus on blocks of fixed size". Journal of Algebra Combinatorics Discrete Structures and Applications 4 (): 75-91
RIS TY - JOUR T1 - Multivariate asymptotic analysis of set partitions: Focus on blocks of fixed size AU - Guy Louchard Y1 - 2018 PY - 2018 N1 - doi: 10.13069/jacodesmath.37019 DO - 10.13069/jacodesmath.37019 T2 - Journal of Algebra Combinatorics Discrete Structures and Applications JF - Journal JO - JOR SP - 75 EP - 91 VL - 4 IS - 1 SN - -2148-838X M3 - doi: 10.13069/jacodesmath.37019 UR - http://dx.doi.org/10.13069/jacodesmath.37019 Y2 - 2018 ER -
EndNote %0 Journal of Algebra Combinatorics Discrete Structures and Applications Multivariate asymptotic analysis of set partitions: Focus on blocks of fixed size %A Guy Louchard %T Multivariate asymptotic analysis of set partitions: Focus on blocks of fixed size %D 2018 %J Journal of Algebra Combinatorics Discrete Structures and Applications %P -2148-838X %V 4 %N 1 %R doi: 10.13069/jacodesmath.37019 %U 10.13069/jacodesmath.37019
ISNAD Louchard, Guy . "Multivariate asymptotic analysis of set partitions: Focus on blocks of fixed size". Journal of Algebra Combinatorics Discrete Structures and Applications 4 / 1 75-91. http://dx.doi.org/10.13069/jacodesmath.37019