On DNA codes from a family of chain rings

Elif Segah Oztas [1] , Bahattin Yildiz [2] , Irfan Siap [3]

255 264

In this work, we focus on reversible cyclic codes which correspond to reversible DNA codes or reversible-complement DNA codes over a family of finite chain rings, in an effort to extend what was done by Yildiz and Siap in \cite{YildizSiap}. The ring family that we have considered are of size $2^{2^k}$, $k=1,2, \cdots$ and we match each ring element with a DNA $2^{k-1}$-mer. We use the so-called $u^2$-adic digit system to solve the reversibility problem and we characterize cyclic codes that correspond to reversible-complement DNA-codes. We then conclude our study with some examples.
Cyclic codes, Chain rings, Reversible codes, DNA codes
  • [1] N. Aboluion, D. H. Smith, S. Perkins, Linear and nonlinear constructions of DNA codes with Hamming distance d, constant GC–content and a reverse–complement constraint, Discrete Math. 312(5) (2012) 1062–1075.
  • [2] T. Abulraub, A. Ghrayeb, X. N. Zeng, Construction of cyclic codes over GF(4) for DNA computing, J. Frankl. Inst. 343(4–5) (2006) 448–457.
  • [3] L. Adleman, Molecular computation of solutions to combinatorial problems, Science 266(5187) (1994) 1021–1024.
  • [4] L. Adleman, P. W. K. Rothemund, S. Roweis, E. Winfree, On applying molecular computation to the Data Encryption Standard, J. Comput. Biol. 6(1) (1999) 53–63.
  • [5] R. Alfaro, S. Bennett, J. Harvey, C. Thornburg, On distances and self–dual codes over Fq[u]=(ut), Involv. J. Math. 2(2) (2009) 177–194.
  • [6] D. Boneh, C. Dunworth, R. Lipton, Breaking DES using molecular computer, Princeton CS Tech–Report, Number CS–TR-489–95, 1995.
  • [7] A. G. Frutos, Q. Liu, A. J. Thiel, A. M. W. Sanner, A. E. Condon, L. M. Smith, R. M. Corn, Demonstration of a word design strategy for DNA computing on surfaces, Nucleic Acids Res. 25(23) (1997) 4748–4757.
  • [8] P. Gaborit, O. D. King, Linear construction for DNA codes, Theoret. Comput. Sci. 334(1–3) (2005) 99–113.
  • [9] O. D. King, Bounds for DNA codes with constant GC–content, Electron. J. Comb. 10 (2003) 1–13.
  • [10] M. Li, H. J. Lee, A. E. Condon, R. M. Corn, DNA word design strategy for creating sets of non–interacting oligonucleotides for DNA microarrays, Langmuir 18(3) (2002) 805–812.
  • [11] M. Mansuripur, P. K. Khulbe, S. M. Kuebler, J. W. Perry, M. S. Giridhar, N. Peyghambarian, Information storage and retrieval using acromolecules as storage media, in Optical Data Storage, OSA Technical Digest Series (Optical Society of America) paper TuC2, 2003.
  • [12] A. Marathe, A. E. Condon, R. M. Corn, On combinatorial DNA word design, J. Comput. Biol. 8(3) (2001) 201–220.
  • [13] J. L. Massey, Reversible codes, Inform. and Control 7(3) (1964) 369–380.
  • [14] G. H. Norton, A. Salagean, On the structure of linear and cyclic codes over a finite chain ring, Appl. Algebr. Eng. Comm. 10 (2000) 489–506.
  • [15] E. S. Oztas, I. Siap, Lifted polynomials Over F16 and their applications to DNA codes, Filomat 27(3) (2013) 459–466.
  • [16] E. S. Oztas, I. Siap, B. Yildiz, Reversible codes and applications to DNA, Lect. Notes Comput. Sc. 8592 (2014) 124–128.
  • [17] E. S. Oztas, I. Siap, On a generalization of lifted polynomials over finite fields and their applications to DNA codes, Int. J. Comput. Math. 92(9) (2015) 1976–1988.
  • [18] I. Siap, T. Abulraub, A. Ghayreb, Similarity cyclic DNA codes over rings, International Conference on Bioinformatics and Biomedical Engineering, in Shanghai, iCBBE 2008, PRC, May 16–18th 2008.
  • [19] I. Siap, T. Abulraub, A. Ghrayeb, Cyclic DNA codes over the ring F2[u]=(u^2-1) based on the deletion distance, J. Frankl. Inst. 346(8) (2009) 731–740.
  • [20] B. Yildiz, I. Siap, Cyclic codes over F2[u]=(u^4-1) and applications to DNA codes, Comput. Math. Appl. 63(7) (2012) 1169–1176.
Konular Mühendislik
Dergi Bölümü Makaleler
Yazarlar

Yazar: Elif Segah Oztas

Yazar: Bahattin Yildiz

Yazar: Irfan Siap

Bibtex @araştırma makalesi { jacodesmath284571, journal = {Journal of Algebra Combinatorics Discrete Structures and Applications}, issn = {}, eissn = {2148-838X}, address = {Yıldız Teknik Üniversitesi}, year = {}, volume = {4}, pages = {93 - 102}, doi = {10.13069/jacodesmath.96056}, title = {On DNA codes from a family of chain rings}, key = {cite}, author = {Siap, Irfan and Oztas, Elif Segah and Yildiz, Bahattin} }
APA Oztas, E , Yildiz, B , Siap, I . (). On DNA codes from a family of chain rings. Journal of Algebra Combinatorics Discrete Structures and Applications, 4 (1), 93-102. DOI: 10.13069/jacodesmath.96056
MLA Oztas, E , Yildiz, B , Siap, I . "On DNA codes from a family of chain rings". Journal of Algebra Combinatorics Discrete Structures and Applications 4 (): 93-102 <http://dergipark.gov.tr/jacodesmath/issue/27044/284571>
Chicago Oztas, E , Yildiz, B , Siap, I . "On DNA codes from a family of chain rings". Journal of Algebra Combinatorics Discrete Structures and Applications 4 (): 93-102
RIS TY - JOUR T1 - On DNA codes from a family of chain rings AU - Elif Segah Oztas , Bahattin Yildiz , Irfan Siap Y1 - 2018 PY - 2018 N1 - doi: 10.13069/jacodesmath.96056 DO - 10.13069/jacodesmath.96056 T2 - Journal of Algebra Combinatorics Discrete Structures and Applications JF - Journal JO - JOR SP - 93 EP - 102 VL - 4 IS - 1 SN - -2148-838X M3 - doi: 10.13069/jacodesmath.96056 UR - http://dx.doi.org/10.13069/jacodesmath.96056 Y2 - 2018 ER -
EndNote %0 Journal of Algebra Combinatorics Discrete Structures and Applications On DNA codes from a family of chain rings %A Elif Segah Oztas , Bahattin Yildiz , Irfan Siap %T On DNA codes from a family of chain rings %D 2018 %J Journal of Algebra Combinatorics Discrete Structures and Applications %P -2148-838X %V 4 %N 1 %R doi: 10.13069/jacodesmath.96056 %U 10.13069/jacodesmath.96056
ISNAD Oztas, Elif Segah , Yildiz, Bahattin , Siap, Irfan . "On DNA codes from a family of chain rings". Journal of Algebra Combinatorics Discrete Structures and Applications 4 / 1 93-102. http://dx.doi.org/10.13069/jacodesmath.96056