Yıl 2018, Cilt 6, Sayı 1, Sayfalar 56 - 63 2018-03-26

DALGACIK-ADAPTIF AĞ TEMELLI BULANIK ÇIKARIM SISTEMLERI ILE DALAMAN ÇAYI AKIMLARININ MODELLENMESİ ÜZERİNE BİR ÇALIŞMA
AN INVESTIGATION ON MODELING OF DALAMAN STREAM FLOWS BY USING WAVE-ANFIS

Dilek TAYLAN [1]

73 84

Çalışmanın amacı Dalgacık analizi ile Adaptif Ağ Temelli Bulanık Çıkarım Sistemini bir arada kullanarak bir akım tahmin modeli geliştirmektir. Türkiye’nin güneyinde yer alan Dalaman Çayı akımlarının tahmini için pek çok model uygulanmıştır. Bu çalışmalardan biri de Taylan (2008) tarafından geliştirilen eğitim seti otoregresif süreçlerle üretilen sentetik serilerle genişletilmiş AR-ANFIS modellerdir. Bu çalışmada,  ANFIS modellerinin eğitim seti dalgacık analizi kullanılarak üretilen alt serilerle genişletilerek W-ANFIS modeller geliştirilmiştir. Girdi veri setlerinin genişletilmesinin model performansını artırdığı görülmüştür. Geliştirilen modeller karşılaştırıldığında, W-ANFIS hibrit modellerinin AR-ANFIS modellerinden daha iyi bir tahmin yeteniğine sahip oldukları gösterilmiştir. Sonuç olarak W-ANFIS hibrit modeli akım tahmininde başarı ile kullanılabilir. 

The object of the study is to investigate a flow estimation model by using a combination of Wavelet Transform Technique (W) and Adaptive Neural Based Fuzzy Inference System (ANFIS). Many models has been applied in recent years for the prediction of Dalaman Stream flow in the south of Turkey. One of these studies was AR-ANFIS models which developed by Taylan (2008), its training data set was extended with synthetic series produced by autoregressive processes. In this study, W-ANFIS models were developed with sub-series generated by wavelet analysis by using extended training set of ANFIS models.  It is seen that increasing the number of input data in training increases model performance. Compared with the developed models, it has been shown that the W-ANFIS hybrid models have a better predictive power than the AR-ANFIS models. Consequently, the W-ANFIS hybrid model could be used successfully in predicting of flow.

  • Awan, J., Bae, D-H., 2014. Improving ANFIS based model for long-term dam inflow prediction by incorporating monthly rainfall forecasts. Water Resour. Manag., 28 (5), 1185–1199.
  • Xu, J., Chen, Y., Li, W., Nie, Q., Song, C., Wei, C., 2014. Integrating wavelet analysis and BPANN to simulate the annual runoff with regional climate change: a case study of Yarkand River, Northwest China. Water Resour. Manag., 28 (9), 2523–2537.
  • Valipour, M., Banihabib, M.E., Behbahani, S.M.R., 2013. Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J. Hydrol., 476, 433–441.
  • Turan, M., Yurdusev, M., 2014. Predicting monthly river flows by genetic fuzzy systems. Water Resour. Manag., 28 (13), 4685–4697.
  • Yarar, A., 2014. A hybrid wavelet and neuro-fuzzy model for forecasting the monthly streamflow data. Water Resour. Manag., 28 (2), 553–565.
  • Taylan, E.D., 2008. Application Of Intelligent Systems For Flow Forecasting In Region Of Mediterranean. Ph.D. Thesis. Süleyman Demirel University Graduate School of Applied and Natural Sciences, Turkey.
  • Keskin, M.E., Taylan, D., 2009. Artificial models for interbasin flow prediction in southern Turkey. ASCE Journal of Hydrologic Engineering., 14, 752–758.
  • Box, G. E. P., Jenkins, G. M., Reinsel, G. C., 1994. Time Series Analysis, Forecasting and Control. Prentice-Hall, Englewood Cliffs, New Jersey, USA.
  • Keskin, M.E., Taylan, D., Terzi, Ö., 2006. Adaptive neural-based fuzzy inference system (ANFIS) approach for modelling hydrological time series. Hydrological Sciences Journal, 51, 588–598.
  • Pektaş A.O., Cigizoglu, K.H., 2013. ANN hybrid model versus ARIMA and ARIMAX models of runoff coefficient. J. Hydrol., 500, 21–36
  • Salas, J.D., Delleur, J.W., Yevjevich, V.M., Lane, W.L. 1980. Applied modeling of hydrologic time series. Water Resources Publications, Littleton
  • Valipour, M., 2012. Parameters estimate of autoregressive moving average and autoregressive integrated moving average models and compare their ability for inflow forecasting. J. Math. Stat., 8 (3), 330–338.
  • Chen, S.H., Lin, Y.H., Chang, L.C., Chang, F. J., 2006. The strategy of building a flood forecast model by neuro-fuzzy network. Hydrol. Processes, 20, 1525–1540.
  • Tingsanchali, T., Gautam, M. R,. 2000. Application of tank, NAM, ARMA and neural network models to flood forecasting. Hydrol. Processes. 14, 2473–2487.
  • Zadeh, L. A., 1965 Fuzzy sets. Information Control, 8(3), 338–353.
  • See, L., Openshaw, S., 2000. Applying soft computing approaches to river level forecasting. Hydrol. Sci. J., 44(5), 763–779.
  • Hundecha, Y., Bardossy, A., Theisen, H. W., 2001. Development of a fuzzy logic based rainfall–runoff model. Hydrol. Sci. J. 46(3), 363–377.
  • Xiong, L. H., Shamseldin, A. Y., , O’Connor, K. M., 2001. A nonlinear combination of the forecasting of rainfall–runoff models by the first order Takagi-Sugeno fuzzy system. J. Hydrol., 245(1/4), 196–217.
  • Jang, J. S. R., 1992. Self-learning fuzzy controllers based on temporal back propagation. IEEE Trans. Neural Networks, 3(5), 714–723.
  • Chang, L. C., Chang, F.J., 2001. Intelligent control for modelling of real-time reservoir operation. Hydrol. Processes, 15, 1621–1634.
  • Wang W.C., Chau, K.W.,, Xu, D. M.,, Chen, X. Y., 2015. Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition. Water Resour. Manag., 29, 2655–2675.
  • Shafaei, M., Kisi, O., 2015. Lake level forecasting using wavelet-SVR, Wavelet-ANFIS and wavelet-ARMA conjunction models. Water Resour. Manag,, 30(1), 79–97.
  • Badrzadeh, H., Sarukkalige, R., Jayawardena, A. W., 2013. Impact of multi-resolution analysis of artificial intelligence models inputs on multi-step ahead river flow forecasting, Journal of Hydrology, 507, 75-85.
  • Kisi, O., Cimen, M., 2011. A wavelet-support vector machine conjunction model for monthly streamflow forecasting, J. Hydrol., 399(1–2), 132–140.
  • Nourani, V., Alami, M. T., Aminfar, M. H., 2009. A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation, Engineering Applications of Artificial Intelligence, 22(3), 466-472. Box, G. E. P., Jenkins, G. M., 1970. Time Series Analysis, Forecasting and Control. Holden-Day, San Francisco, California, USA.
  • DeLurgio, S. A., 1998. Forecasting Principles and Applications. McGraw-Hill, New York, USA.
  • Tsoukalas, L. H., Uhrig, R. E., 1997. Fuzzy and Neural Approaches in Engineering. Wiley-Interscience, John Wiley & Sons. Inc., New York, USA.
  • Lin, C.T., Lee, C.S.G., 1995. Neural fuzzy systems, New Jersey, USA, Prentice Hall PTR 797. Wang, W., Ding, J., 2003. Wavelet network model and its application to the predication of hydrology. Nature and Science, 1(1), 67–71.
Birincil Dil en
Konular Mühendislik ve Temel Bilimler
Dergi Bölümü Araştırma Makaleleri \ Research Articles
Yazarlar

Orcid: 0000-0003-0734-1900
Yazar: Dilek TAYLAN (Sorumlu Yazar)
Kurum: Süleyman Demirel Üniversitesi
Ülke: Turkey


Bibtex @araştırma makalesi { jesd380158, journal = {Mühendislik Bilimleri ve Tasarım Dergisi}, issn = {}, eissn = {1308-6693}, address = {Süleyman Demirel Üniversitesi}, year = {2018}, volume = {6}, pages = {56 - 63}, doi = {10.21923/jesd.380158}, title = {AN INVESTIGATION ON MODELING OF DALAMAN STREAM FLOWS BY USING WAVE-ANFIS}, key = {cite}, author = {TAYLAN, Dilek} }
APA TAYLAN, D . (2018). AN INVESTIGATION ON MODELING OF DALAMAN STREAM FLOWS BY USING WAVE-ANFIS. Mühendislik Bilimleri ve Tasarım Dergisi, 6 (1), 56-63. DOI: 10.21923/jesd.380158
MLA TAYLAN, D . "AN INVESTIGATION ON MODELING OF DALAMAN STREAM FLOWS BY USING WAVE-ANFIS". Mühendislik Bilimleri ve Tasarım Dergisi 6 (2018): 56-63 <http://dergipark.gov.tr/jesd/issue/33308/380158>
Chicago TAYLAN, D . "AN INVESTIGATION ON MODELING OF DALAMAN STREAM FLOWS BY USING WAVE-ANFIS". Mühendislik Bilimleri ve Tasarım Dergisi 6 (2018): 56-63
RIS TY - JOUR T1 - AN INVESTIGATION ON MODELING OF DALAMAN STREAM FLOWS BY USING WAVE-ANFIS AU - Dilek TAYLAN Y1 - 2018 PY - 2018 N1 - doi: 10.21923/jesd.380158 DO - 10.21923/jesd.380158 T2 - Mühendislik Bilimleri ve Tasarım Dergisi JF - Journal JO - JOR SP - 56 EP - 63 VL - 6 IS - 1 SN - -1308-6693 M3 - doi: 10.21923/jesd.380158 UR - http://dx.doi.org/10.21923/jesd.380158 Y2 - 2018 ER -
EndNote %0 Mühendislik Bilimleri ve Tasarım Dergisi AN INVESTIGATION ON MODELING OF DALAMAN STREAM FLOWS BY USING WAVE-ANFIS %A Dilek TAYLAN %T AN INVESTIGATION ON MODELING OF DALAMAN STREAM FLOWS BY USING WAVE-ANFIS %D 2018 %J Mühendislik Bilimleri ve Tasarım Dergisi %P -1308-6693 %V 6 %N 1 %R doi: 10.21923/jesd.380158 %U 10.21923/jesd.380158
ISNAD TAYLAN, Dilek . "DALGACIK-ADAPTIF AĞ TEMELLI BULANIK ÇIKARIM SISTEMLERI ILE DALAMAN ÇAYI AKIMLARININ MODELLENMESİ ÜZERİNE BİR ÇALIŞMA". Mühendislik Bilimleri ve Tasarım Dergisi 6 / 1 (Mart 2018): 56-63. http://dx.doi.org/10.21923/jesd.380158