Yıl 2018, Cilt 6, Sayı 1, Sayfalar 64 - 73 2018-03-26

ARİTMİK EKG SİNYALLERİNDE DAYANIKLI YENİ BİR QRS YAKALAMA ALGORİTMASI
A NEW ROBUST QRS DETECTION ALGORITHM IN ARRHYTHMIC ECG SIGNALS

Süleyman BILGIN [1] , Zahide Elif AKIN [2]

55 124

Elektrokardiyogram (EKG) sinyallerindeki QRS algılama, bazı kardiyovasküler bozuklukların otomatik teşhisine yardımcı olmak için önemli bilgiler sağlamaktadır. Literatürde QRS tespiti ile ilgili birçok çalışma bulunmaktadır. Tüm bu çalışmalar, elektriksel gürültü, taban hattı kayması, kas gürültüleri, küçük ve geniş QRS kompleksleri dahil olmak üzere QRS algılamanın geliştirilmesine odaklanmıştır. Bununla birlikte, bazı QRS kompleksleri morfolojik ve aritmik bozuklukları nedeniyle tespit edilemez. Bu vuruş türleri gözlem sırasında yanlış değerlendirilir. Bu nedenle, bu tür algoritmaların başarısını ve doğruluğunu arttırmak, giyilebilir kalp tanı cihazlarının geliştirilmesi için büyük önem taşımaktadır. Aritmik EKG sinyalleri, otomatik olarak algılanması çok zor olan ani, dar, küçük ve negatif QRS kompleksleri gibi farklı morfolojik özellikleri içerir. Bu çalışmada, bu tür QRS komplekslerinin saptanması için literatürdeki diğer çalışmalardan daha yüksek doğrulukta yeni bir algoritma önermekteyiz. Dijital filtrelemeye ve Ayrık Dalgacık Dönüşümüne (ADD) dayanan bu yöntem MIT / BIH aritmi veri tabanındaki 48 hastadan elde edilen iki kanallı EKG kayıtlarını kullanarak değerlendirildi ve test edildi. Bu algoritmanın genel performans sonuçlarında, duyarlılık %99,79, öngörme oranı %99,95, algılama hata oranı 0,26 ve doğruluk skoru %99,74 olarak hesaplanmaktadır.

The QRS detection in electrocardiogram (ECG) signals provides significant information to help automatic diagnosis of some cardiovascular disorders. There are many studies about QRS detection in the literature. All these studies have focused on the development of QRS detection including noise, baseline wander, artifacts, small and wide QRS complexes. However, some QRS complexes cannot be detected due to their morphological and arrhythmic disorders. These types of beats are misevaluated during observation. Therefore, increasing the success and accuracy of such algorithms is of great importance for the development of wearable cardiac diagnostic devices. Arrhythmic ECG signals include different morphologic features, such as sudden, narrow, small, and negative QRS complexes, which are very difficult to automatically detect. In this study, we propose a new algorithm with higher accuracy than other studies in the literature for the detection these types of QRS complexes. The proposed method based on digital filtering and Discrete Wavelet Transform (DWT) is evaluated and tested using the two-channel ECG records obtained from 48 patients in the MIT/BIH arrhythmia database. The overall performance results of this algorithm are calculated as 99.79% of the sensitivity, 99.95% of the predictivity rate, the detection error rate of 0.26 and 99.74% of accuracy score.

  • Pan, J., Tompkins, W.J., 1985. A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering, 3, 230-236.
  • Paoletti, M., Marchesi, C., 2006. Discovering dangerous patterns in long-term ambulatory ECG recordings using a fast QRS detection algorithm and explorative data analysis. Computer Methods and programs in biomedicine, 82 (1), 20-30.
  • Xue, Q., Hu, Y.H., Tompkins, W.J., 1992. Neural-network-based adaptive matched filtering for QRS detection. IEEE Transactions on Biomedical Engineering, 39 (4), 317-329.
  • Zidelmal, Z., Amirou, A., Adnane, M., Belouchrani, A., 2012. QRS detection based on wavelet coefficients. Computer methods and programs in biomedicine, 107 (3), 490-496.
  • Chen, S.W., Chen, H.C., Chan, H.L., 2006. A real-time QRS detection method based on moving-averaging incorporating with wavelet denoising. Computer methods and programs in biomedicine, 82 (3), 187–195.
  • Rufas, D.C., Carrabina, J., 2015. Simple real-time QRS detector with the MaMeMi filter. Biomedical Signal Processing and Control, 21, 137-145.
  • Yeh, Y.C., Wang, W.J., 2008. QRS complexes detection for ECG signal: The Difference Operation Method. Computer methods and programs in biomedicine, 91 (3), 245-254.
  • Moraes, J., Freitas, M., Vilani, F., Costa, E., 2002. A QRS complex detection algorithm using electrocardiogram leads. Conference on Computers in Cardiology, 205-208.
  • Manikandan, M.S., Soman, K., 2012. A novel method for detecting R-peaks in electrocardiogram (ECG) signal. Biomedical Signal Processing and Control, 7 (1), 18-128.
  • Farashi, S., 2016. A multiresolution time-dependent entropy method for QRS complex detection. Biomedical Signal Processing and Control, 24, 63-71.
  • Sharma, L.D.,, Sunkaria R.K., 2016. A robust QRS detection using novel pre-processing techniques and kurtosis based enhanced efficiency. Measurement, 87, 194-204.
  • Arzeno, N.M., Deng, Z.D., Poon, C.S., 2008. Analysis of first-derivative based QRS detection algorithms. IEEE Transactions on Biomedical Engineering, 55 (2), 478-484.
  • Chouhan, V., Mehta, S., 2008. Detection of QRS complexes in 12-lead ECG using adaptive quantized threshold. International Journal of Computer Science and Network Security, 8 (1), 155-163.
  • Tan, K., Chan, K., Choi, K., 2000. Detection of the QRS complex, P wave and T wave in electrocardiogram. First International Conference on Advances in Medical Signal and Information Processing, 41-47.
  • Slimane, Z.E.H., Naït-Ali, A., 2010. QRS complex detection using Empirical Mode Decomposition. Digital Signal Processing, 20 (4), 1221-1228.
  • Zhang, F., Lian, Y., 2009. QRS detection based on multi-scale mathematical morphology for wearable ECG devices in body area networks. IEEE Transactions on Biomedical Circuits and Systems, 3 (4), 220–228.
  • Köhler, B., Hennig, C., Orglmeister, R., 2003. QRS detection using zero crossing counts. Applied genomics and proteomics, 2 (2), 138-145.
  • Yochuma, M., Renaud, C., Jacquir, S., 2016. Automatic detection of P, QRS and T patterns in 12 leads ECG signal based on CWT. Biomedical Signal Processing and Control, 25, 46-52.
  • Bahoura, M., Hassani, M., Hubin, M., 1997. DSP implementation of wavelet transform for real time ECG wave forms detection and heart rate analysis. Computer methods and programs in biomedicine, 52 (1), 35-44.
  • Phukpattaranont, P., 2015. QRS detection algorithm based on the quadratic filter. Expert Systems with Applications, 42 (11), 4867-4877.
  • Hongyan, X., Minsong, H., 2008. A new QRS detection algorithm based on empirical mode decomposition. The 2nd International Conference on Bioinformatics and Biomedical Engineering, 693–696.
  • Choi, S., Adnane, M., Lee, G.J., Jang, H., Jiang, Z., Park, H.K., 2010. Development of ECG beat segmentation method by combining lowpass filter and irregular R-R interval checkup strategy. Expert Systems with Applications, 37 (7), 5208–5218.
  • Karimipour, A., Homaeinezhad, M.R., Real-time electrocardiogram P-QRST detection-delineation algorithm based on quality-supported analysis of characteristic templates. Computers in biology and medicine, 52, 153–165.
  • Bouaziz, F., Boutana, D., Benidir, M., 2014. Multiresolution wavelet-based QRS complex detection algorithm suited to several abnormal morphologies. IET Signal Processing, 8 (7), 774–782.
  • Martinez, J.P., Almeida, R., Olmos, S., Rocha, A.P., Laguna, P., 2004. A wavelet-based ECG delineator: evaluation on standard databases. IEEE transactions on biomedical engineering, 51 (4), 570-581.
  • Arbateni, K., Bennia, A., 2014. Sigmoidal radial basis function ANN for QRS complex detection. Neurocomputing, 145, 438–450.
  • Zhu, H., Dong, J., 2013. An R-peak detection method based on peaks of Shannon energy envelope. Biomedical Signal Processing and Control, 8 (5), 466–474.
  • Guzeler, A.C., Bilgin, S., 2016. QRS Complex Detection Algorithm Based on Discrete Wavelet and Hilbert Transform within The ECG Signal Arrhythmia. In 20th National Biomedical Engineering Meeting, 219-224.
  • Moody, G.B., Mark, R.G., 2001. The impact of the MIT-BIH arrhythmia database. IEEE Engineering in Medicine and Biology Magazine, 20 (3), 45-50.
  • Chakraborty, M., Shreya, D., 2012. Determination of signal to noise ratio of electrocardiograms filtered by band pass and savitzky-golay filters. Procedia Technology, 4, 830-833.
  • Manolakis, D., Ingle, V.K., 2012. Applied digital signal processing: theory and practice. Cambridge University Press.
Birincil Dil en
Konular Mühendislik ve Temel Bilimler
Dergi Bölümü Araştırma Makaleleri \ Research Articles
Yazarlar

Orcid: 0000-0003-0496-8943
Yazar: Süleyman BILGIN (Sorumlu Yazar)
E-posta: suleymanbilgin@akdeniz.edu.tr
Kurum: Akdeniz University, Engineering Faculty, Dept. of Electrical & Electronics Engineering
Ülke: Turkey


Orcid: 0000-0001-5358-225X
Yazar: Zahide Elif AKIN
E-posta: zahideelifakin@gmail.com
Kurum: Akdeniz University, Institute of Natural Sciences, Dept. of Electrical & Electronics Engineering
Ülke: Turkey


Bibtex @araştırma makalesi { jesd391625, journal = {Mühendislik Bilimleri ve Tasarım Dergisi}, issn = {}, address = {Süleyman Demirel Üniversitesi}, year = {2018}, volume = {6}, pages = {64 - 73}, doi = {10.21923/jesd.391625}, title = {A NEW ROBUST QRS DETECTION ALGORITHM IN ARRHYTHMIC ECG SIGNALS}, key = {cite}, author = {AKIN, Zahide Elif and BILGIN, Süleyman} }
APA BILGIN, S , AKIN, Z . (2018). A NEW ROBUST QRS DETECTION ALGORITHM IN ARRHYTHMIC ECG SIGNALS. Mühendislik Bilimleri ve Tasarım Dergisi, 6 (1), 64-73. DOI: 10.21923/jesd.391625
MLA BILGIN, S , AKIN, Z . "A NEW ROBUST QRS DETECTION ALGORITHM IN ARRHYTHMIC ECG SIGNALS". Mühendislik Bilimleri ve Tasarım Dergisi 6 (2018): 64-73 <http://dergipark.gov.tr/jesd/issue/33308/391625>
Chicago BILGIN, S , AKIN, Z . "A NEW ROBUST QRS DETECTION ALGORITHM IN ARRHYTHMIC ECG SIGNALS". Mühendislik Bilimleri ve Tasarım Dergisi 6 (2018): 64-73
RIS TY - JOUR T1 - A NEW ROBUST QRS DETECTION ALGORITHM IN ARRHYTHMIC ECG SIGNALS AU - Süleyman BILGIN , Zahide Elif AKIN Y1 - 2018 PY - 2018 N1 - doi: 10.21923/jesd.391625 DO - 10.21923/jesd.391625 T2 - Mühendislik Bilimleri ve Tasarım Dergisi JF - Journal JO - JOR SP - 64 EP - 73 VL - 6 IS - 1 SN - -1308-6693 M3 - doi: 10.21923/jesd.391625 UR - http://dx.doi.org/10.21923/jesd.391625 Y2 - 2018 ER -
EndNote %0 Mühendislik Bilimleri ve Tasarım Dergisi A NEW ROBUST QRS DETECTION ALGORITHM IN ARRHYTHMIC ECG SIGNALS %A Süleyman BILGIN , Zahide Elif AKIN %T A NEW ROBUST QRS DETECTION ALGORITHM IN ARRHYTHMIC ECG SIGNALS %D 2018 %J Mühendislik Bilimleri ve Tasarım Dergisi %P -1308-6693 %V 6 %N 1 %R doi: 10.21923/jesd.391625 %U 10.21923/jesd.391625