Yıl 2019, Cilt 5, Sayı 1, Sayfalar 102 - 118 2019-01-15

Cognitive Load in Multimedia Learning: An Example from Teaching about Lenses

Dževdeta Dervić [1] , Nermin Đapo [2] , Vanes Mešić [3] , Ratko Đokić [4]

4 32

Animations are widely used in today’s science classrooms. Therefore it is very important to explore under which conditions animations are most effective. In earlier studies it has been generally shown that the effectiveness of instruction largely depends on management of cognitive load. The aim of the present study was to compare the effect of Physlet animations, printed sequences of selected animation frames and traditionally presented static pictures on understanding about lenses and levels of cognitive load. According to the results of a quasi-experiment that included forty nine high-school students, Physlet-based teaching generally leads to higher germane load and consequently to more effective learning than the traditional approach. Particularly high levels of germane load have been found for Physlet-based problems. These findings can be accounted for by the interactivity feature of Physlets. 
Interactive multimedia, Instructional materials, Physlets, Cognitive load theory
  • Arons, A.B. (1997). Teaching Introductory Physics. New York: John Wiley & Sons.Ayres, P., & Sweller, J. (2005). The split-attention principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 135–146). New York, NY: Cambridge University Press.Baddeley, A. (1992). Working memory: The interface between memory and cognition. Journal of Cognitive Neuroscience, 4, 281–288. doi: 10.1162/jocn.1992.4.3.281Belloni, M., Christian, W., & Cox, A. J. (2007). Teaching qualitative energy-eigenfunction shape with Physlets. The Physics Teacher, 45, 488-491. doi: 10.1119/1.2798360Betrancourt, M. (2005). The animation and interactivity principles in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 287-296). New York: Cambridge University Press.Bonham, S. W., Risley, J. S., & Christian, W. (1999). Using Physlets to teach electrostatics. The Physics Teacher, 37, 276-280.Brünken, R., Steinbacher, S., Schnotz, W., & Leutner, D. (2001). Mentale Modelle und Effekte der Präsentations und Abrufkodalität beim Lernen mit Multimedia [Mental models and the effects of presentation and retrieval mode in multimedia learning]. Zeitschrift für Pädagogische Psychologie, 15, 15–27.Caramazza, A., McCloskey, M.&Green, B. (1981). Naive beliefs in ‘‘sophisticated'' subjects: misconceptions about trajectories of objects. Cognition, 9, 117–123.Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8, 293–332. doi: 10.1207/s1532690xci0804_2Belloni, M., & Christian, W. (2001). Physlets: Teaching Physics with Interactive Curricular Material. Upper Saddle River, NJ: Pearson Education.Christian, W., & Belloni, M. (2004). Physlet Physics: Interactive Illustrations, Explorations and Problems for Introductory Physics. Upper Saddle River, NJ: Pearson Education. Christian, W., & Belloni, M. (2013). Physlet Physics 2E: Interactive Illustrations, Explorations and Problems for Introductory Physics – 2nd Edition Pre-release. Available from: http://www.compadre.org/Physlets/index.cfm.Cox, A. J., Belloni, M., Dancy, M., & Christian, W. (2003). Teaching thermodynamics with Physlets® in introductory physics. Physics Education, 38, 433-440. doi: 10.1088/0031-9120/38/5/309Dancy, M., Christian, W., & Belloni, M. (2002). Teaching with Physlets®: Examples from optics. The Physics Teacher, 40, 494-499. doi: 10.1119/1.1526622De Jong, T. (2010). Cognitive load theory, educational research, and instructional design: some food for thought. Instructional Science, 38, 105–134. doi: 10.1007/s11251-009-9110-0Fui-Theng, L. E. O. W., & Mai, N. E. O. (2014). Interactive multimedia learning: Innovating classroom education in a Malaysian university. TOJET: The Turkish Online Journal of Educational Technology, 13, 99-110.Gerjets, P. (2010). Bridge over troubled water: from cognitive science to designing digital instruction. Keynote speech at the 32nd Annual Meeting of the Cognitive Science Society. Portland, OR.Goldberg, F. M., & McDermott, L. C. (1987). An investigation of student understanding of the real image formed by a converging lens or concave mirror. American Journal of Physics, 55, 108-119. doi: 10.1119/1.15254Hegarty, M. (1992). Mental animation: Inferring motion from static displays of mechanical systems. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 1084–1102. Johnson, C. I., & Priest, H. A. (2014). The feedback principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed., pp. 449–463). New York: Cambridge University Press.Kalyuga, S. (2008). Managing Cognitive Load in Adaptive Multimedia Learning. New York: Information Science Reference.Knight, R. D. (2004). Five easy lessons: Strategies for successful physics teaching. San Francisco, CA: Addison Wesley.Krusberg, Z. A. (2007). Emerging technologies in physics education. Journal of Science Education and Technology, 16, 401-411. doi: 10.1007/s10956-007-9068-0Leppink J, Paas F, Van der Vleuten CP, Van Gog T, Van Merriënboer JJ. (2013). Development of an instrument for measuring different types of cognitive load. Behavior research methods, 45, 1058-72. doi: 10.3758/s13428-013-0334-1Lewalter, D. (2003). Cognitive strategies for learning from static and dynamic visuals. Learning and Instruction, 13, 177-189. doi: 10.1016/S0959-4752(02)00019-1Lee, K. M., Nicoll, G., & Brooks, D. W. (2004). A comparison of inquiry and worked example web-based instruction using physlets. Journal of Science Education and Technology, 13, 81-88. doi: 10.1023/B:JOST.0000019640.07432.2bLowe, R. K., & Schnotz, W. (Eds.). (2008). Learning with animation. Research implications for design. New York: Cambridge University Press.Mayer, R. E. (2001). Multimedia learning. New York: Cambridge University Press.Mayer, R. E., & Anderson, R. B. (1992). The instructive animation: Helping students build connections between words and pictures in multimedia learning. Journal of Educational Psychology, 84, 444–452. Mayer, R. E., & Moreno, R. (1998). A split-attention effect in multimedia learning: Evidence for dual processing systems in working memory. Journal of Educational Psychology, 90, 312–320.Mayer, R. E., & Sims, V. K. (1994). For whom is a picture worth a thousand words? Extensions of a dual-coding theory of multimedia learning. Journal of Educational Psychology, 84, 389-460.Mayer, R. E., Hegarty, M., Mayer, S., & Campbell, J. E. (2005). When static media promote active learning: Annotated illustrations versus narrated animations in multimedia instruction. Journal of Experimental Psychology: Applied, 11, 256-265.McCloskey, M. (1983a). Intuitive physics. Scientific American, 248, 122–130. McCloskey, M. (1983b). Naive theories of motion. In D. Gentner & A.L. Stevens (Eds.), Mental Models (pp. 299–324). Hillsdale, NJ: Erlbaum.Author3, Author1, Gazibegović-Busuladžić, A., Salibašić, Dž., & Erceg, N. (2015) Author3, Hajder, E., Neumann, K., & Erceg, N. (2016)Paas, F., & Van Merriënboer, J. J. G. (1994). Variability of worked examples and transfer of geometrical problem-solving skills: A cognitive-load approach. Journal of Educational Psychology, 86, 122–133.Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38, 1-4. doi: 10.1207/S15326985EP3801_1Paas, F., Renkl, A., & Sweller, J. (2004). Cognitive load theory: instructional implications of the interaction between information structures and cognitive architecture. Instructional Science, 32, 1-8. Doi: 10.1023/B:TRUC.0000021806.17516.d0Paas, F., Tuovinen, J. E., Tabbers, H., & Van Gerven, P. (2003). Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist, 38, 63–71. doi: 10.1207/S15326985EP3801_8Rapp, D. N., & Kurby, C. A. (2008). The ‘ins’ and ‘outs’ of learning: Internal representations and external visualizations. In J. Gilbert, M. Reiner & M. Nakhleh (Eds.), Visualization: Theory and Practice in Science Education (pp. 29-52): Springer Netherlands.Rasch, T. & Schnotz, W. (2009). Interactive and non-interactive pictures in multimedia learning environments: Effects on learning outcomes and learning efficiency. Learning and Instruction, 19, 411-422. doi: 10.1016/j.learninstruc.2009.02.008Scheiter, K. & Eitel, A. (2010). How to foster the integration of text and diagrams: an eye tracking study on the use of signals in multimedia learning. Poster presented at the 32nd Annual Meeting of the Cognitive Science Society. Portland, OR.Shell, D.F., Brooks, D.W., Trainin, G., Wilson, K.M., Kauffman, D.F., & Herr, L.M. (2009). The Unified Learning Model. Dordrecht: Springer.Schnotz, W., & Bannert, M. (1999). Einflusse der Visualisierungsform auf die Konstruktion mentaler Modelle beim Bild- und Textverstehen [Influences of the visualization format on the construction of mental models during picture and text comprehension]. Zeitschrift fur experimentelle Psychologie, 46, 216-235.Schnotz, W., & Lowe, R. K. (2008). A unified view of learning from animated and static graphics. In R. K. Lowe, & W. Schnotz (Eds.), Learning with animation. Research implications for design (pp. 304 - 356). New York: Cambridge University Press.Schnotz, W., & Rasch, T. (2005). Enabling, facilitating, and inhibiting effects of animations in multimedia learning: Why reduction of cognitive load can have negative results on learning. Educational Technology: Research and Development, 53, 47-58. doi: 10.1007/BF02504797Schuler, A., Scheiter, K. & Gerjets, P. (2010). Does spatial verbal information interfere with picture processing in working memory? The role of the visuo-spatial sketchpad in multimedia learning. In S. Ohlsson & R. Catrambone (Eds), Proceedings of the 32nd Annual Meeting of the Cognitive Science Society (pp. 2828– 2833). Austin, TX: Cognitive Science Society.Schwan, S., & Riempp, R. (2004). The cognitive benefits of interactive videos: Learning to tie nautical knots. Learning and Instruction, 14, 293-305. doi: 10.1016/j.learninstruc.2004.06.005Spector, M. J., Christensen, D. L., Sioutine, A. V., & McCormack, D. (2001). Models and simulations for learning in complex domains: using causal loop diagrams for assessment and evaluation. Computers in Human Behavior, 17, 517-545. doi: 10.1016/S0747-5632(01)00025-5Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction, 4, 295–312. doi: 10.1016/0959-4752(94)90003-5Sweller, J. (2005). Implications of cognitive load theory for multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 19–30). New York, NY: Cambridge University Press.Sweller, J., & Chandler, P. (1994). Why some material is difficult to learn. Cognition and Instruction, 12, 185–233. doi: 10.1207/s1532690xci1203_1Sweller, J., Ayers, P., Kalyuga, S. (2011). Cognitive load theory. Springer, New York.Sweller, J., Mawer, R., & Ward, M. (1983). Development of expertise in mathematical problem-solving. Journal of Experimental Psychology; General, 112, 634-656.Sweller, J., Van Merriënboer, J. J. G., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251–296. doi: 10.1207/s1532690xci1203_1Swezey, R. W. (1991). Effects of instructional strategy and motion presentation conditions on the acquisition and transfer of electromechanical troubleshooting skill. Human Factors, 33, 309-323. doi: 10.1177/001872089103300306Tuminaro, J., & Redish, E. F. (2007). Elements of a cognitive model of physics problem solving: Epistemic games. Physical Review Special Topics-Physics Education Research, 3, 020101. doi: 10.1103/PhysRevSTPER.3.020101Tversky, B., Heiser, J., Mackenzie, R., Lozano, S., & Morrison, J. (2008). Enriching animations. In R. K. Lowe, & W. Schnotz (Eds.), Learning with animation: Research implications for design (pp. 263-285). New York: Cambridge University Press.Tversky, B., Morrison, J. B., & Bétrancourt, M. (2002). Animation: Can it facilitate? International Journal of Human Computer Studies, 57, 247-262. doi: 10.1006/ijhc.1017Ülen, S., Čagran, B., Slavinec, M., & Gerlič, I. (2014). Designing and evaluating the effectiveness of Physlet-based learning materials in supporting conceptual learning in secondary school physics. Journal of Science Education and Technology, 23, 658-667. doi: 10.1007/s10956-014-9492-xÜlen, S., Gerlič, I., Slavinec, M., & Repnik, R. (2017). Evaluating the Effectiveness of Physlet-Based Materials in Supporting Conceptual Learning About Electricity. Journal of Science Education and Technology, 26,151-160. doi: 10.1007/s10956-016-9661-1Van Merriënboer, J. J. G., & Kirschner, P. A. (2007). Ten steps to complex learning. Mahwah, NJ: Lawrence Erlbaum.Van Merriënboer, J. J. G., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments and future directions. Educational Psychology Review, 17, 147–177. doi: 10.1007/s10648-005-3951-0Van Merriënboer, J. J. G., Kester, L. & Paas, F. (2006). Teaching complex rather than simple tasks: Balancing intrinsic and germane load to enhance transfer of learning. Applied Cognitive Psychology, 20, 343-352. doi: 10.1002/acp.1250Viennot, L. (2003). Teaching physics. Dodrecht: Kluwer.Zacks, J., Tversky, B., &Iyer, G. (2001). Perceiving, remembering, and communicating structure in events. Journal of Experimental Psychology: General, 130, 29–58. doi: 10.1037/0096-3445.130.1.29Zukić, M., Author2 ., & Husremović Dž. (2016)
Birincil Dil en
Konular Fen
Dergi Bölümü Articles
Yazarlar

Yazar: Dževdeta Dervić (Sorumlu Yazar)
Kurum: University of Sarajevo
Ülke: Bosnia and Herzegovina


Yazar: Nermin Đapo

Yazar: Vanes Mešić

Yazar: Ratko Đokić

Bibtex @araştırma makalesi { jeseh481698, journal = {JOURNAL OF EDUCATION IN SCIENCE ENVIRONMENT AND HEALTH}, issn = {}, eissn = {2149-214X}, address = {ISRES Publishing}, year = {2019}, volume = {5}, pages = {102 - 118}, doi = {10.21891/jeseh.481698}, title = {Cognitive Load in Multimedia Learning: An Example from Teaching about Lenses}, key = {cite}, author = {Mešić, Vanes and Đokić, Ratko and Đapo, Nermin and Dervić, Dževdeta} }
APA Dervić, D , Đapo, N , Mešić, V , Đokić, R . (2019). Cognitive Load in Multimedia Learning: An Example from Teaching about Lenses. JOURNAL OF EDUCATION IN SCIENCE ENVIRONMENT AND HEALTH, 5 (1), 102-118. DOI: 10.21891/jeseh.481698
MLA Dervić, D , Đapo, N , Mešić, V , Đokić, R . "Cognitive Load in Multimedia Learning: An Example from Teaching about Lenses". JOURNAL OF EDUCATION IN SCIENCE ENVIRONMENT AND HEALTH 5 (2019): 102-118 <http://dergipark.gov.tr/jeseh/issue/42569/481698>
Chicago Dervić, D , Đapo, N , Mešić, V , Đokić, R . "Cognitive Load in Multimedia Learning: An Example from Teaching about Lenses". JOURNAL OF EDUCATION IN SCIENCE ENVIRONMENT AND HEALTH 5 (2019): 102-118
RIS TY - JOUR T1 - Cognitive Load in Multimedia Learning: An Example from Teaching about Lenses AU - Dževdeta Dervić , Nermin Đapo , Vanes Mešić , Ratko Đokić Y1 - 2019 PY - 2019 N1 - doi: 10.21891/jeseh.481698 DO - 10.21891/jeseh.481698 T2 - JOURNAL OF EDUCATION IN SCIENCE ENVIRONMENT AND HEALTH JF - Journal JO - JOR SP - 102 EP - 118 VL - 5 IS - 1 SN - -2149-214X M3 - doi: 10.21891/jeseh.481698 UR - http://dx.doi.org/10.21891/jeseh.481698 Y2 - 2018 ER -
EndNote %0 JOURNAL OF EDUCATION IN SCIENCE ENVIRONMENT AND HEALTH Cognitive Load in Multimedia Learning: An Example from Teaching about Lenses %A Dževdeta Dervić , Nermin Đapo , Vanes Mešić , Ratko Đokić %T Cognitive Load in Multimedia Learning: An Example from Teaching about Lenses %D 2019 %J JOURNAL OF EDUCATION IN SCIENCE ENVIRONMENT AND HEALTH %P -2149-214X %V 5 %N 1 %R doi: 10.21891/jeseh.481698 %U 10.21891/jeseh.481698
ISNAD Dervić, Dževdeta , Đapo, Nermin , Mešić, Vanes , Đokić, Ratko . "Cognitive Load in Multimedia Learning: An Example from Teaching about Lenses". JOURNAL OF EDUCATION IN SCIENCE ENVIRONMENT AND HEALTH 5 / 1 (Ocak 2019): 102-118. http://dx.doi.org/10.21891/jeseh.481698