Year 2015, Volume 23, Issue 4, Pages 1695 - 1710 2015-12-15

To Examine How The Skills Of Class Teacher Candidates In Terms Of Interpreting Tables and Graphics Hange According To Mathematical Reasoning Skills
Sınıf Öğretmeni Adaylarının Matematiksel Muhakeme Becerilerine Göre Tablo ve Grafikleri Yorumlama Başarılarının İncelenmesi

Sefa DÜNDAR [1] , Hakan YAMAN [2]

184 1266

The purpose of this study is to examine how the skills of class teacher candidates in terms of interpreting tables and graphics change according to their class levels and mathematical reasoning skills. This study has been conducted among teacher candidates studying at a state university, department of class teachers, in 1st, 2nd, and 3rd Grades. 220 teacher candidates participated in the study. Data collection tools have been used “Mathematical Reasoning Assessment Scale”, “Table Interpretation Test” and “Graphics Interpretation Test” in this study. The findings of the study showed that the mathematical reasoning skills of the teacher candidates varied meaningfully according to the class levels. There is a meaningful relation between the table interpretation and graphic interpretation performances of the teacher candidates in terms of mathematical reasoning skill levels.
Bu çalışmanın amacı, sınıf öğretmeni adaylarının tablo ve grafik yorumlama başarılarının sınıf seviyelerine ve matematiksel muhakeme becerilerine göre nasıl değiştiğinin incelenmesidir. Bu araştırmada hem karşılaştırmalı hem de korelasyon türü ilişkisel tarama modeli kullanılmıştır. Bu araştırma bir devlet üniversitesinde sınıf öğretmenliği anabilim dalında öğrenim gören 1, 2 ve 3. sınıf toplam 220 öğretmen adayı ile gerçekleştirilmiştir. Araştırmada veri toplama araçları olarak “Matematiksel Muhakeme Değerlendirme Ölçeği”, “Tablo Yorumlama Testi” ve “Grafik Yorumlama Testi” kullanılmıştır. Araştırmanın bulguları öğretmen adaylarının sınıf seviyelerine göre matematiksel muhakeme becerilerinin anlamlı bir şekilde farklılaştığı, matematiksel muhakeme beceri seviyeleri açısından tablo ve grafik yorumlama performansları arasında anlamlı bir fark olduğu bulunmuştur
  • Abruscato, J. (2000). Teaching children science, Needham Heights, M.A: Allyn and Bacon, 37-52.
  • Akkuş Çıkla, O. ve Duatepe, A. (2002). “İlköğretim matematik öğretmen adaylarının orantısal akıl yürütme becerileri üzerine niteliksel bir araştırma”, Hacettepe Üniversitesi Eğitim Fakütesi Dergisi, 23, 32-40.
  • Alamolhodaei, H. (1996). A study in higher education calculus and students’ learning styles. (Phd thesis), University of Glasgow.
  • Alkan, H., & Bukova Güzel, E. (2005). Öğretmen adaylarında matematiksel düşünmenin gelişimi. Gazi Eğitim Fakültesi Dergisi, 25(3), 221-236.
  • Beichner, R. J. (1994). Testing student interpretation of kinematics graphs. American journal of Physics, 62(8), 750-762.
  • Capraro, M. M., Kulm, G., & Capraro, R. M. (2005). Middle grades: Misconceptions in statistical thinking. School Science and Mathematics, 105(4), 165-174.
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Earlbaum Associates.
  • Çoban, H. (2010). Öğretmen adaylarının matematiksel muhakeme becerileri ile bilişötesi öğrenme stra- tejilerini kullanma düzeyleri arasındaki ilişki (Yüksek Lisans), Gaziosmanpaşa Üniversitesi, Tokat.
  • Demirci, N., & Uyanık, F. (2009). Onuncu sınıf öğrencilerinin grafik anlama ve yorumlamaları ile kinematik başarıları arasındaki ilişki. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi (EFMED), 3(2), 22-51.
  • Diezmann, C., & English, L. D. (2001). Developing young children’s mathematical power. Reoper Review, 24(1), 11-13.
  • Dunham, P. H., & Osborne, A. (1991). Learning How to See: Students Graphing Difficulties. Focus on Learning Problems in Mathematics, 13(4), 35-49.
  • Fischbein, E., & Schnarch, D. (1997). The evolution with age of probabilistic, intuitively based misconceptions. Journal for research in mathematics education, 28(1), 96-105.
  • Fraenkel, J. R., & Wallen, N. E. (2006). How to Design and Evaluate Research in Education. Newyork:McGraw-Hill.
  • Karasar, N. (2005). Bilimsel Araştırma Yöntemleri. Ankara: Nobel Yayınları.
  • Kaya, D., & Keşan, C. (2014). İlköğretim seviyesindeki öğrenciler için cebirsel düşünme ve cebirsel muhakeme becerisinin önemi. International Journal of New Trends in Arts, Sports & Science Education (IJTASE), 3(2).
  • Kieran, C. (1992). The learning and teaching of school algebra. In D. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 390-419). New York: Macmillan Publishing Company.
  • Kramarski, B., Mevarech, Z. R., & Lieberman, A. (2001). Effects of multilevel versus unilevel metacog- nitive training on mathematical reasoning. The Journal of Educational Research, 94(5), 292-300.
  • Lithner, J. (2008). A research framework for creative and imitative reasoning. Educational Studies in Mathematics, 67(3), 255-276.
  • Liu P. H (2003), Do teachers need to incorporate the history of mathematics in their teaching? The Mathematics Teacher. Reston: Sep .Vol.96, Iss. 6; pg. 416.
  • Martin, D. J. (2002). Elementary Science Methods a Constructivist Approach. Newyork: Delmar Publishers, 57-117.
  • Mevarech, Z.R. ve Kramarskı, B. (1997) IMPROVE: A multidimensional method for teaching mathe- matics in heterogeneous classrooms, American Educational Research Journal, 34(2), (365-395).
  • McKenzie, D. L., & Padilla, M. J. (1984). Effect of the laboratory activities and written simulations of the acquisition of the graphing skills by eight grade students. Paper presented at the 57th meeting of the National Association for Research in Science Teaching, New Orleans.
  • Milli Eğitim Bakanlığı [MEB] (2009). İlköğretim Matematik Dersi (1-5. sınıflar) Öğretim Progra- mı, Talim ve Terbiye Kurulu Başkanlığı, Ankara.
  • Milli Eğitim Bakanlığı [MEB] (2013). Ortaokul Matematik Dersi (5, 6, 7 ve 8. sınıflar) Öğretim Programı, Talim ve Terbiye Kurulu Başkanlığı, Ankara.
  • National Council of Teachers of Mathematics (1989) .Curriculum and evaluation standards for school mathematics. Reston, Virginia.
  • Olkun, S., & Toluk, Z. (2003). İlköğretimde Etkinlik Temelli Matematik Öğretimi. Ankara: Anı Yayıncılık.
  • Peresini, D. & Webb, N. (1999). Analyzing Mathematical Reasoning in Students’ Responses Across Multiple Performance Assessment Tasks. Developing Mathematical Reasoning in Grades K-12/ Lee V. Stiff, 1999 Yearbook Editör, National Council of Teachers of Mathematics, Reston, Virginia.
  • Pilten, P. (2008). Üstbiliş stratejileri öğretiminin ilköğretim beşinci sınıf öğrencilerinin matematik- sel muhakeme becerilerine etkisi. (Doktora Tezi), Gazi Üniversitesi, Ankara.
  • Schneicer, W. & Lockl, K. (2002). The development of metacognitive knowledge in children an adolescents. In T. Perfect, B. Scwartz (Eds.). Applied Metacognition. West Nyack, NY, USA: Cambiridge University Pres.
  • Tall, D. (1996). Functions and calculus International handbook of mathematics education (pp. 289- 325): Springer.
  • Türk Dil Kurumu [TDK] (2014). www.tdk.gov.tr, 10.05.2014 tarihinde erişim.
  • Umay, A. (2003). Matematiksel muhakeme yeteneği. Hacettepe Üniversitesi Eğitim Fakültesi Der- gisi, 24(3), 234-243.
  • Yackel, E. & Hanna, G. (2003). Reasoning and Proof. In J. Kilpatrick, G. Martin and D. Schifter (Ed.), A Research Companion to Principles and Standards for School Mathematics (pp. 227- 236). Reston, VA: National Council of Teachers of Mathematics.
Subjects
Other ID JA42VG28EC
Journal Section Articles
Authors

Author: Sefa DÜNDAR
Institution: ABANT İZZET BAYSAL ÜNİVERSİTESİ, EĞİTİM FAKÜLTESİ, MATEMATİK VE FEN BİLİMLERİ EĞİTİMİ BÖLÜMÜ, İLKÖĞRETİM MATEMATİK EĞİTİMİ ANABİLİM DALI

Author: Hakan YAMAN
Institution: ABANT İZZET BAYSAL ÜNİVERSİTESİ, EĞİTİM FAKÜLTESİ, MATEMATİK VE FEN BİLİMLERİ EĞİTİMİ BÖLÜMÜ, İLKÖĞRETİM MATEMATİK EĞİTİMİ ANABİLİM DALI

Bibtex @ { kefdergi241366, journal = {Kastamonu Eğitim Dergisi}, issn = {}, eissn = {2147-9844}, address = {Kastamonu University}, year = {2015}, volume = {23}, pages = {1695 - 1710}, doi = {}, title = {Sınıf Öğretmeni Adaylarının Matematiksel Muhakeme Becerilerine Göre Tablo ve Grafikleri Yorumlama Başarılarının İncelenmesi}, key = {cite}, author = {DÜNDAR, Sefa and YAMAN, Hakan} }
APA DÜNDAR, S , YAMAN, H . (2015). Sınıf Öğretmeni Adaylarının Matematiksel Muhakeme Becerilerine Göre Tablo ve Grafikleri Yorumlama Başarılarının İncelenmesi. Kastamonu Eğitim Dergisi, 23 (4), 1695-1710. Retrieved from http://dergipark.gov.tr/kefdergi/issue/22597/241366
MLA DÜNDAR, S , YAMAN, H . "Sınıf Öğretmeni Adaylarının Matematiksel Muhakeme Becerilerine Göre Tablo ve Grafikleri Yorumlama Başarılarının İncelenmesi". Kastamonu Eğitim Dergisi 23 (2015): 1695-1710 <http://dergipark.gov.tr/kefdergi/issue/22597/241366>
Chicago DÜNDAR, S , YAMAN, H . "Sınıf Öğretmeni Adaylarının Matematiksel Muhakeme Becerilerine Göre Tablo ve Grafikleri Yorumlama Başarılarının İncelenmesi". Kastamonu Eğitim Dergisi 23 (2015): 1695-1710
RIS TY - JOUR T1 - Sınıf Öğretmeni Adaylarının Matematiksel Muhakeme Becerilerine Göre Tablo ve Grafikleri Yorumlama Başarılarının İncelenmesi AU - Sefa DÜNDAR , Hakan YAMAN Y1 - 2015 PY - 2015 N1 - DO - T2 - Kastamonu Eğitim Dergisi JF - Journal JO - JOR SP - 1695 EP - 1710 VL - 23 IS - 4 SN - -2147-9844 M3 - UR - Y2 - 2019 ER -
EndNote %0 Kastamonu Education Journal Sınıf Öğretmeni Adaylarının Matematiksel Muhakeme Becerilerine Göre Tablo ve Grafikleri Yorumlama Başarılarının İncelenmesi %A Sefa DÜNDAR , Hakan YAMAN %T Sınıf Öğretmeni Adaylarının Matematiksel Muhakeme Becerilerine Göre Tablo ve Grafikleri Yorumlama Başarılarının İncelenmesi %D 2015 %J Kastamonu Eğitim Dergisi %P -2147-9844 %V 23 %N 4 %R %U
ISNAD DÜNDAR, Sefa , YAMAN, Hakan . "Sınıf Öğretmeni Adaylarının Matematiksel Muhakeme Becerilerine Göre Tablo ve Grafikleri Yorumlama Başarılarının İncelenmesi". Kastamonu Eğitim Dergisi 23 / 4 (December 2015): 1695-1710.