Yıl 2016, Cilt 24, Sayı 3, Sayfalar 1165 - 1182 2016-07-15

Üstün Yetenekli Öğrencilerin Matematiksel Problem Çözme Durumlarındaki Motivasyonel Öngörüleri
The Motivational Forethoughts Of Gifted Students In Mathematical Problem Solving Situations

Gönül YAZGAN SAĞ [1] , Ziya ARGÜN [2]

272 1342

Bu araştırmanın amacı, üstün yetenekli öğrencilerin karşılaştıkları matematik problemleri ile ilgili motivasyonel öngörülerini derinlemesine ve detaylı olarak ortaya koymaktır. 10. sınıfa devam eden üç üstün yetenekli öğrenci ile 10 tane problem çözme oturumu gerçekleştirilmiştir. Elde edilen bulgulara göre; öğrenciler, problemlerin zorluk derecesini, daha önceden çözdükleri problemlerde göstermiş oldukları performanslarına, problem tipini sevip sevmemelerine ve sahip oldukları içerik bilgisindeki eksikliklerine göre değerlendirmişleridir. Araştırmada öğrencilerin problemleri doğru çözme konusunda büyük ölçüde kendilerine güvendikleri belirlenmiştir. Ayrıca öğrencilerin çoğunlukla öğrenmeye yönelik hedef yönelimlerinin olduğu görülmüştür. Üstün yetenekli öğrencilerin problemleri değerli bulma gerekçelerini, çoğunlukla ilgililerini çekip çekmemesine ve problemi önemli bulup bulmamalarına göre ifade etmişlerdir.
The aim of this study is to indicate the gifted students' motivational forethoughts about the mathematical problems with in detail. 10 problem solving sessions were carried out with three 10th grade gifted students. According to the findings, the students evaluated the difficulty of the problems based on previous performances, whether they like the type of problem and lack of their content knowledge. They had self-efficacy about solving correctly. The students had goal orientations mostly towards learning. They mostly expressed their reasons for considering the problem as valuable based on whether the problems caught their attention and whether they considered the problems as significant or not.
  • Auerbach, C. F., & Silverstein, L. B. (2003). Qualitative data: An introduction to coding and analy- sis. New York: New York University Press.
  • Bandura, A. (1997). Self-efficacy: The exercise of control. New York: Freeman.
  • Cleary, T., & Zimmerman, B. J. (2001). Self-regulation differences during athletic practice by ex- perts, non-experts, and novices. Journal of Applied Sport Psychology, 13, 61–82.
  • Dai, D. Y., Moon, S. M., and Feldhusen, J. F. (1998). Achievement motivation and gifted students: A social cognitive perspective, Educational Psychologist, 33(2-3), 45-63.
  • Diezmann, C. M., & Watters, J. J. (2002). The importance of challenging tasks for mathematically gifted students. Gifted and Talented International, 17(2), 76-84.
  • Dresel, M., & Haugwitz, M. (2006). The relationship between cognitive abilities and self regulated learning: evidence for interactions with academic self-concept and gender. High Ability Studies, 16(2), 201-218.
  • Efklides, A. (2006). Metacognition and affect: What can metacognitive experiences tell us about the learning process? Educational Research Review, 1, 3–14
  • Gagné, F. (2003). Transforming Gifts into Talents: The DMGT as a Developmental Theory. In: N. Colangelo & G. A. Davis (Eds.) Handbook of Gifted Education (pp. 60-74). Boston MA: Allyn and Bacon, Inc.
  • Garofalo, J. (1993). Mathematical problem preferences of meaning-oriented and number-oriented problem solvers. Journal for the Education of the Gifted, 17, 26-40.
  • Glaser, B., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research. Chicago: Aldine Publishing Company.
  • Greene, J. A., Moos D. C., Azevedo R., & Winters, F. I. (2008). Exploring differences betwe- en gifted and grade-level students’ use of self-regulatory learning processes with hypermedia. Computers & Education, 50, 1069–1083
  • Lupkowski-Shoplik, A. E., & Assouline, S. G. (1994). Evidence of extreme mathematical precocity: Case studies of talented youths. Roeper Review, 16(3), 144-151.
  • Malpass, J. R., O’neil, H. F., & Hocevar JR., D. (1999). Self-regulation, goal orientation, self- efficacy, worry, and high-stakes math achievement for mathematically gifted high school stu- dents. Roeper Review, 21(4), 281-288.
  • Miller, R. C. (1990). Discovering mathematical talent. Reston, VA: Council for Exceptional Child- ren, ERIC Clearinghouse on Disabilities and Gifted Education. ERIC Document Reproduction Service No: ED 321 487.
  • Neber, H. & Schommer-Aikins, M. (2002) Self-regulated science learning with highly gifted stu- dents: The role of cognitive, motivational, epistemological, and environmental variables. High Ability Studies, 13(1), 59-74.
  • Pajares, F. (1996). Self-efŞcacy beliefs in academic settings. Review of Educational Research, 66(4), 543–578.
  • Pintrich, P.R. (1999). The role of motivation in promoting and sustaining self-regulated learning. International Journal of Educational Research, 31,459-470.
  • Pintrich, P. R. (2000). The role of goal orientation in self-regulated learning. In M. Boekaerts, P. R. Pintrich, & M. Zeidner (Eds), Handbook of self- regulation (pp. 451-501). San Diego, CA: Academic Press.
  • Pintrich, P. R., & De Groot, E. V. (1990). Motivational and self-regulated learning components of classroom academic performance. Journal of Educational Psychology, 82(1), 33-40.
  • Ruban, L., & Reis, S.M. (2006). Patterns of self-regulatory strategy use among low-achieving and high-achieving university students. Roeper Review, 28(3), (148-156).
  • Senko, C., Hulleman, C.S. and Harackiewicz, J. M. (2011) Achievement goal theory at the crossroads: Old controversies, current challenges, and new directions, Educational Psychologist, 46(1), 26-47.
  • Schunk, D. H. (1985). Self-efficacy and classroom learning. Psychology in the Schools, 22, 208-223.
  • Schunk, D.H., & Zimmerman, B.J. (Eds.). (1994). Self- regulation of learning and performance: Issues and educational applications. Hillsdale, NJ: Erlbaum
  • Wigfield, A., & Eccles, J. (1992). The development of achievement task values: A theoretical analy- sis. Developmental Review, 12, 265-310.
  • Yetkin, İ. E. (2006). The role of classroom context in student self-regulated learning: an exploratory case study in a sixth-grade mathematics classroom. Doktora Tezi. UMI Number: 3217420, Ohio State University.
  • Yıldırım, A. & Şimşek, H. (2006). Sosyal Bilimlerde Nitel Araştırma Yöntemleri. Ankara: Seçkin Yayıncılık
  • Yin, R. K. (1994). Case study research: Designs and methods. Newbury Park, CA: Sage.
  • Zimmerman, B. J. (2000). Attaining of self-regulation: A social cognitive perspective. In M. Boekaerts, P. Pintrich & M. Zeidner (Eds.), Handbook of self-regulation (pp. 13-39). Orlando, FL: Academic Press.
  • Zimmerman, B. J. (2001). Theories of self-regulated learning and academic achievement: An overview and analysis. In B. J. Zimmerman & D. H. Schunk, (Eds.) Self- regulated learning and academic ac- hievement: Theoretical perspectives (pp. 1-37). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
  • Zimmerman, B. J. (2008). Investigating self-regulation and motivation: Historical background, methodo- logical developments, and future prospects, American Educational Research Journal, 45(1), 166-183.
Konular
Diğer ID JA42MK38EC
Dergi Bölümü Makaleler
Yazarlar

Yazar: Gönül YAZGAN SAĞ

Yazar: Ziya ARGÜN

Bibtex @ { kefdergi241652, journal = {Kastamonu Eğitim Dergisi}, issn = {}, eissn = {2147-9844}, address = {Kastamonu Üniversitesi}, year = {2016}, volume = {24}, pages = {1165 - 1182}, doi = {}, title = {Üstün Yetenekli Öğrencilerin Matematiksel Problem Çözme Durumlarındaki Motivasyonel Öngörüleri}, key = {cite}, author = {ARGÜN, Ziya and YAZGAN SAĞ, Gönül} }
APA YAZGAN SAĞ, G , ARGÜN, Z . (2016). Üstün Yetenekli Öğrencilerin Matematiksel Problem Çözme Durumlarındaki Motivasyonel Öngörüleri. Kastamonu Eğitim Dergisi, 24 (3), 1165-1182. Retrieved from http://dergipark.gov.tr/kefdergi/issue/22607/241652
MLA YAZGAN SAĞ, G , ARGÜN, Z . "Üstün Yetenekli Öğrencilerin Matematiksel Problem Çözme Durumlarındaki Motivasyonel Öngörüleri". Kastamonu Eğitim Dergisi 24 (2016): 1165-1182 <http://dergipark.gov.tr/kefdergi/issue/22607/241652>
Chicago YAZGAN SAĞ, G , ARGÜN, Z . "Üstün Yetenekli Öğrencilerin Matematiksel Problem Çözme Durumlarındaki Motivasyonel Öngörüleri". Kastamonu Eğitim Dergisi 24 (2016): 1165-1182
RIS TY - JOUR T1 - Üstün Yetenekli Öğrencilerin Matematiksel Problem Çözme Durumlarındaki Motivasyonel Öngörüleri AU - Gönül YAZGAN SAĞ , Ziya ARGÜN Y1 - 2016 PY - 2016 N1 - DO - T2 - Kastamonu Eğitim Dergisi JF - Journal JO - JOR SP - 1165 EP - 1182 VL - 24 IS - 3 SN - -2147-9844 M3 - UR - Y2 - 2019 ER -
EndNote %0 Kastamonu Eğitim Dergisi Üstün Yetenekli Öğrencilerin Matematiksel Problem Çözme Durumlarındaki Motivasyonel Öngörüleri %A Gönül YAZGAN SAĞ , Ziya ARGÜN %T Üstün Yetenekli Öğrencilerin Matematiksel Problem Çözme Durumlarındaki Motivasyonel Öngörüleri %D 2016 %J Kastamonu Eğitim Dergisi %P -2147-9844 %V 24 %N 3 %R %U
ISNAD YAZGAN SAĞ, Gönül , ARGÜN, Ziya . "Üstün Yetenekli Öğrencilerin Matematiksel Problem Çözme Durumlarındaki Motivasyonel Öngörüleri". Kastamonu Eğitim Dergisi 24 / 3 (Temmuz 2016): 1165-1182.