Yıl 2018, Cilt 26, Sayı 6, Sayfalar 2189 - 2201 2018-11-15

Which Types of Questions Must Be Used In Order To Determine Spatial Ability?
Uzamsal Yetenek Belirlemek İçin Hangi Tür Sorular Kullanılmalıdır?

İbrahim Kepceoğlu [1] , Niyazi Öner Ercan [2]

18 20

The understanding of two-dimensional and three-dimensional objects in the environment, the spatial ability is an important concept. Spatial ability have been defined in different ways by many researchers when looking at the field literature. Given the common definitions, spatial ability is defined as the ability to move and visualize three-dimensional space objects and components in their minds. For this reason, the aims of this research is to determine the extent to which the 8th grade students have open-ended questions and multiple choice tests and spatial skill levels. Another goal is to compare two different test methods that measure spatial skills. For this purpose, this research was designed as a case study from qualitative approaches. A purposeful sampling method was used for the purpose of the study. 8th grade students with the highest level of knowledge in geometry at secondary school level were selected. The working group of the study is composed of 77 students studying in a high school of Northern Turkey. The 10 questions selected from the MGMP spatial ability test, which was accepted in the field as a data collection tool in the survey, were used both as open ended and multiple choice. According to research findings, 68% of the answers given by 77 students as multiple choice were correct, only 45% of the answers given as open ended were correctly coded. Accordingly, it can be understood that students are more successful in the multiple-choice test, which is the preferred method for determining the spatial competence of the students. On the other hand, however, it has been seen that students are more successful in multiple-choice questions, especially when it comes to drawing skills (questions 11, 20, 22 and 23).

İki ve üç boyutlu nesnelerin birbirleriyle ve çevreyle ilişkilerinin anlaşılmasında, geometriyle ilişkili önemli kavramların başında gelen uzamsal yeteneğin payı kuşkusuz büyüktür. Uzamsal yeteneği ortak tanımlara bakıldığında uzamsal yetenek üç boyutlu uzayda cisimleri ve bileşenlerini zihinde hareket ettirebilme ve canlandırabilme yeteneği olarak tanımlanmıştır. Öğrencilerin geometrik düşünme düzeylerini geliştirmek, matematik eğitiminin en kritik amaçlarından biri olmalıdır. Bu araştırmanın amacı ortaokul öğrencilerinin açık uçlu sorular ve çoktan seçmeli sorular oluşan testlerin uzamsal yetenek düzeyini belirlemede etkililiğinin karşılaştırılmasıdır. Bu iki test yönteminin öğrencilerin uzamsal yetenek becerilerini belirlemede nasıl farklılıklar ortaya çıkardığı belirlenmiştir. Bu amaç doğrultusunda bu araştırma nitel yaklaşımlardan durum çalışması olarak desenlenmiştir. Araştırmanın amacına uygun olarak amaçlı örnekleme yöntemi kullanılmıştır. Geometri konusunda ortaokul seviyesinde en fazla bilgi düzeyine sahip olan 8.sınıf öğrencileri seçilmiştir. Araştırmanın çalışma grubunu Türkiye’nin kuzeyinde bir devlet ortaokulunun 8.sınıfında öğrenim gören 77 öğrenci oluşturmuştur. Araştırmada veri toplama aracı olarak alan yazında kabul gören MGMP isimli uzamsal yetenek testinden seçilen 10 soru hem açık uçlu olarak hem de çoktan seçmeli olarak kullanılmıştır. Araştırma bulgularına göre 77 öğrencinin 10 soruya çoktan seçmeli olarak verdikleri yanıtların %68’i doğru olurken, bu 10 soruya açık uçlu olarak verdikleri yanıtların sadece %45’i doğru olarak kodlanmıştır.  Buna göre öğrencilerin uzamsal yeteneğini belirlemek için tercih edilen çoktan seçmeli testte öğrencilerin daha başarılı sonuç gösterdikleri anlaşılabilir. Ancak buna karşın öğrencilerin özellikle çizim becerisi gerektiren sorularda (soru11, 20, 22 ve 23) öğrencilerin çoktan seçmeli sorularda daha başarılı oldukları görülmüştür.

  • Aktaş, M. ve Aktaş, D. Y. (2011). 8. Sınıf öğrencilerinin dörtgenleri köşegen özelliklerinden yararlanarak tanıma sürecinin incelenmesi, 10. Matematik Sempozyumu. İstanbul, Işık Üniversitesi.
  • Aktaş, M. C., ve Aktaş, D. Y. (2012). Öğrencilerin dörtgenleri anlamaları: paralelkenar örneği. Eğitim ve Öğretim Araştırmaları Dergisi, 1(2), 319–329.
  • Altun, M. (2008). İlköğretim İkinci Kademede (6, 7 ve 8. sınıflarda) Matematik Öğretimi. Erkam Matbaacılık, 6. Baskı, Bursa.
  • Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52, 215-241. Baki, A. (2008). Kuramdan uygulamaya matematik eğitimi. Ankara: Harf Eğitim Yayıncılığı.
  • Baki,A ., Kösa, T., ve Güven, B. (2011). A comparative study of the effects of using dynamic geometry software and physical manipulatives on the spatial visualisation skills of pre-service mathematics teachers. British Journal of Educational Technology, 42(2), 291-310.
  • Başaran-Şimşek, E. (2012). Dinamik Geometri Yazılımı Kullanmanın İlköğretim 6. Sınıf Öğrencilerinin Matematik Dersindeki Akademik Başarılarına ve Uzamsal Yeteneklerine Etkisi. Yüksek Lisans Tezi, Gazi Üniversitesi Eğitim Bilimleri Enstitüsü. Ankara.
  • Battista, C. (2007). Applications of mental rotation figures of the Shepard and Metzler type and description of a mental rotation stimulus library. Brain and cognition, 66(3), 260-264.
  • Battista, M., Wheatley, G. ve Talsma, G. (1989). Spatial visualization, formal reasoning, and geometric problem-solving strategies of preservice elementary teachers. Focus on Learning Problems in Mathematics, 11(4), 17-30.
  • Baykul, Y. (2005). İlköğretimde Matematik Öğretimi (1-5. Sınıflarda). Ankara: Pegem Yayıncılık.
  • Bishop AJ (1980) Spatial abilities and mathematics education: A review. Educational Studies in Mathematics, 11(1980), 257-269. Bodner, G. M., & Guay, R. B. (1997). The Purdue visualization of rotations test. The Chemical Educator, 2(4), 1-17.
  • Bridgeman, B. (1992). A comparison of quantitative questions in open‐ended and multiple‐choice formats. Journal of Educational Measurement, 29(3), 253-271.
  • Bulut S. ve Köroğlu S., 2000, On Birinci Sınıf Öğrencilerinin ve Matematik Öğretmen Adaylarının Uzaysal Yeteneklerinin İncelenmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 18, 56-61.
  • Burnett, S. A., ve Lane, D. M. (1980). Effects of academic instruction on spatial visualization. Intelligence, 4(3), 233-242.
  • Carpenter, P. A., ve Just, M. A. (1986). Spatial ability: An information processing approach to psychometrics. Advances in the psychology of human intelligence, 3, 221-253.
  • Carroll, J. B. (1993). Human cognitive abilities:A survey of factor-analytic studies. New York: Cambridge University Press.
  • Casey, M. B., Nuttall, R. L., ve Pezaris, E. (2001). Spatial-mechanical reasoning skills versus mathematics self-confidence as mediators of gender differences on mathematics subtests using cross-national gender-based items. Journal for Research in Mathematics Education, 28-57.
  • Chang, Y. (2014). 3D-CAD effects on creative design performance of different spatial abilities students. Journal of ComputerAssisted Learning, 30, 397-407
  • Clements, D. H. ve Battista, M.T. (1992). Geometry and Spatial Reasoning. In D. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning, 420-464. New York:Macmillan Publishing Company.
  • Clements, D.H. ve McMillen, S. (1996). Rethinking “Concrete” Manipulatives. Teaching Children Mathematics, 2(5), 270-279.
  • Clements, D.H., ve Sarama, J. (2007). Early childhood mathematics learning. In F. Lester (Ed.), Handbook of Research on Teaching and Learning Mathematics (2nd ed.). Greenwich, CT: Information Age Publishing
  • Dane, A. ve Başkurt, H. (2011). İlköğretim 6,7 ve 8. Sınıf Öğrencilerinin Doğru Parçası, Doğrusallık, Işın ve Açı Kavramlarını Algılama Düzeyleri. Erzincan Eğitim Fakültesi Dergisi,13(2). 23-35.
  • Del Grande, J. (1990). Spatial sense. The Arithmetic Teacher, 37(6), 14.
  • Dere, E. (2017). Web Tabanlı 3B Tasarım Uygulamalarının Ortaokul Öğrencilerinin Uzamsal Görselleştirme ve Zihinsel Döndürme Becerilerine Etkisi. Yüksek Lisans Tezi, Başkent Üniversitesi Eğitim Bilimleri Enstitüsü. Ankara.
  • De Villiers, M. (1994). The role and function of a hierarchical classification of quadrilaterals. For the learning of mathematics,(17). 11-18.
  • Downs, R., ve DeSouza, A. (2006). Learning to think spatially: GIS as a support system in the K–12 curriculum. National Academies Press.
  • Durmuş, S. (2012). Geometrik Düşünme ve Geometrik Kavramlar. J. A. Walle, K. S. Karp, & J. M. Bay-Williams içinde, İlkokul ve Ortaokul Matematiği Gelişimsel Yaklaşımla Öğretim (s. 400). Ankara: Nobel.
  • Ergün, S. (2010). İlköğretim 7. Sınıf Öğrencilerinin Çokgenleri Algılama, Tanımlama ve Sınıflama Biçimleri, Yayınlanmamış Yüksek Lisans Tezi. Dokuz Eylül Üniversitesi, Eğitim Bilimleri Enstitüsü, İzmir.
  • Fennema, E., ve Tartre, L. A. (1985). The use of spatial visualization in mathematics by girls and boys. Journal for Research in Mathematics Education, 184-206.
  • Gutiérrez, A. (1996). Visualization in 3-dimensional geometry: In search of a framework. Proceedings of the 18th International Conference for the Psychology of Mathematics Education (Vol.1, p. 328), USA.
  • Gün, E. (2014). Artırılmış Gerçeklik Uygulamalarının Öğrencilerin Uzamsal Yeteneklerine Etkisi. Yüksek Lisans Tezi, Gazi Üniversitesi Eğitim Bilimleri Enstitüsü. Ankara.
  • Hannafin, R. D., Truxaw, M. P., Vermillion, J. R., & Liu, Y. (2008). Effects of spatial ability and instructional program on geometry achievement. The Journal of Educational Research, 101(3), 148-157.
  • Heigham, J. ve Croker, R.A. (2009). Qualitative Research in Applied Linguistics A Practical İntroduction. Palgrave Macmillan, New York.
  • İça Turhan, E. (2010). Bilgisayar Destekli Perspektif Çizimlerin Sekizinci Sınıf Öğrencilerinin Uzamsal Yeteneklerine, Matematik, Teknoloji ve Geometriye Karşı Tutumlarına Etkisi. Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü. Eskişehir.
  • Jackson, C., Lamar, M., Wilhelm, J. A., ve Cole, M. (2015). Gender and Racial Differences: Development of Sixth Grade Students’ Geometric Spatial Visualization within an Earth/Space Unit. School Science and Mathematics 115(7), 330-343.
  • Jones, K. (2002). Issues in the Teaching and Learning of Geometry. In: Linda Haggarty (Ed), Aspects of Teaching Secondary Mathematics: perspectives on practice. London: RoutledgeFalmer. Chapter 8, pp 121-139. ISBN: 0-415-26641-6).
  • Kalay, H. (2015). 7. Sınıf Öğrencilerinin Uzamsal Yönelim Becerilerini Geliştirmeye Yönelik Tasarlanan Öğrenme Ortamının Değerlendirilmesi. Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi Eğitim Bilimleri Enstitüsü. Trabzon.
  • Kimura, D. (1999). Sex and cognition. Cambridge, MA: MIT Press
  • Kösa, T. (2016). Uzamsal Yetenek: Tanımı ve Bileşenleri. E. Bingölbali, S. Arslan, & İ. Ö. Zembat içinde, Matematik Eğitiminde Teoriler (s. 337-338). Ankara: Pegem Akademi.
  • Linn, M. C., ve Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child development, 1479-1498.
  • Lohman, D. F. (1993). Spatial ability. Human abilities: Their nature and measurement, 97, 116.
  • Malara, N. (1998). On the difficulties of visualization and representation of 3D objects in middle school teachers. In A. Olivier & K. Newstead (Eds.), Proceedings of the 22nd PME International Conference, 3, 239-246.
  • Martin-Guiterrez, J., Gil, F. A., Contero, M., ve Saorin, J. l. (2010). Dynamic Three-Dimensional Illustrator for Teaching Descriptive Geometry and Training Visualisation Skills.
  • McGee, M.G. (1979). Human spatial abilities: psychometric studies and environmental , genetic, hormonal and influences. Psychological Bulletin, 86(5), 889-918.
  • MEB (2015a). Ortaokul matematik dersi 5-8. Sınıflar öğretim programı. Ankara: MEB Talim ve Terbiye Kurulu Başkanlığı.
  • MEB (2015b). Ortaöğretim matematik dersi 9-12. Sınıflar öğretim programı. Ankara: MEB Talim ve Terbiye Kurulu Başkanlığı.
  • Monaghan, F. (2000). What difference does it make? Children’s views of the differences between some guadrilaterals. Educational studies in mathematics, 42(2), 179-196.
  • Morse, J. M. (2003). Principles of mixed methods and multimethod research design. Handbook of mixed methods in social and behavioral research, 1, 189-208.
  • NCTM (National Council of Teachers of Mathematics) (2000). Principles and standards for school mathematics, Reston, VA: Author Okagaki, L., ve Frensch, P. A. (1996). Effects of video game playing on measures of spatial performance: Gender effects in late adolescence. Interacting with video, 11, 115-140.
  • Olkun, S. (2003). Making Connections: Improving Spatial Abilities with Engineering Drawing Activities. International Journal of Mathematics Teaching and Learning, 4(2), 86-91.
  • Ozuru, Y., Briner, S., Kurby, C. A., & McNamara, D. S. (2013). Comparing comprehension measured by multiple-choice and open-ended questions. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 67(3), 215.
  • Özkan, M. (2015). 7. sınıf öğrencilerinin çokgenlerde ve özel dörtgenlerde yaptıkları kavram yanılgılarının incelenmesi. Yayınlanmamış Yüksek Lisans Tezi. Çukurova Üniversitesi, Sosyal Bilimler Enstitüsü, Adana.
  • Parzysz, B. (1988). Problems of the plane representation of space geometry figures. Educational Studies in Mathematics, 19(1), 79–92.
  • Parzysz, B. (1991). Representations of space and students’ conceptions at high school level. Educational Studies in Mathematics, 22(6), 575–593.
  • Sowder, J. T., ve Wearne, D. (2006). What do we know about eighth-grade student achievement? Mathematics Teaching in the Middle School.
  • Stockdale, C., ve Possin, C. (1998). Spatial Relations and Learning. ARK Foundation, Allenmore Medical Center.
  • Strong, S., ve Smith, R. (2002). Spatial visualization: Fundamentals and trends in engineering graphics. Journal of industrial technology, 18(1), 1-6.
  • Tan, Ş. (2009). Öğretimde ölçme ve değerlendirme: KPSS el kitabı. Pegem Akademi
  • Tartre, L.A. (1990). Spatial Orientation Skill and Mathematical Problem Solving. Journal for Research in Mathematics Education, 21, 216-229.
  • Titus, S., & Horsman, E. (2009). Characterizing and improving spatial visualization skills. Journal of Geoscience Education, 57(4), 242-254.
  • Thurstone, L. L.(1938) Primary Mental Abilities, Psychometric Monographs, 1–121.
  • Turğut, M. ve Nagy-Kondor, R. (2013). Spatial visualization skills of Hungarian and Turkish prospective mathematics teachers. International Journal for Studies in Mathematics Education, 6(1), 168-183.
  • Turğut, M. (2007). İlköğretim II. Kademede Öğrencilerin Uzamsal Yeteneklerinin İncelenmesi. Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi Eğitim Bilimleri Enstitüsü. İzmir.
  • Turgut, M. F. ve Baykul, Y. (2012). Eğitimde ölçme ve değerlendirme. Ankara: Pegem Akademi
  • Tversky, B. (2005). Visuospatial reasoning. The Cambridge handbook of thinking and reasoning, (13), 209-240.
  • Ubuz, B. ve Üstün, I. (2003). Figural and conceptual aspects in identifying polygons. Proceedings of the 27th International Conference for the Psychology of Mathematics Education (Vol.1, p. 328), USA.
  • Usiskin, Z. (1987). Why elementary algebra can, should, and must be an eighth-grade course for average students. The Mathematics Teacher, 80(6), 428-438.
  • Wai, J., Lubinski, D., ve Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817.
  • Yıldırım, A. ve Şimşek, H. (2006). Sosyal Bilimlerde Nitel Araştırma Yöntemleri. 6. Baskı. Ankara: Seçkin Yayıncılık.
  • Yıldız, B. (2009). Üç-Boyutlu Sanal Ortam ve Somut Materyal Kullanımının Uzamsal Görselleştirme ve Zihinsel Döndürme Becerilerine Etkisi. Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü. Ankara.
  • Yolcu, B. (2008). Altıncı Sınıf Öğrencilerinin Uzamsal Yeteneklerini Somut Modeller ve Bilgisayar Uygulamaları ile Geliştirme Çalışmaları. Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü. Eskişehir.
  • Yurt, E. (2011). Sanal Ortam ve Somut Nesneler Kullanılarak Gerçekleştirilen Modellemeye Dayalı Etkinliklerin Uzamsal Düşünme ve Zihinsel Çevirme Becerilerine Etkisi. Yüksek Lisans Tezi, Selçuk Üniversitesi Eğitim Bilimleri Enstitüsü. Konya.
  • Yüksel, N. S. (2013). Uzamsal Yetenek, Bileşenleri ve Uzamsal Yeteneğin Geliştirilmesi Üzerine. Doktora Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü. Ankara.
  • Zimmerman, W. (1991). Editors' introduction: What is mathematical visualization? In W. Zimmerman ve S. Cunningham (Eds.), Visualization in teaching and learning mathematics (pp. 1—7). Washington, DC: Mathematical Association of America .
Birincil Dil tr
Konular
Yayımlanma Tarihi Kasım-2018
Dergi Bölümü Makaleler
Yazarlar

Yazar: İbrahim Kepceoğlu
Kurum: KASTAMONU ÜNİVERSİTESİ, EĞİTİM FAKÜLTESİ
Ülke: Turkey


Yazar: Niyazi Öner Ercan
Kurum: SİNOP BOYABAT HAMİT TEKİN ORTAOKULU
Ülke: Turkey


Bibtex @araştırma makalesi { kefdergi479918, journal = {Kastamonu Eğitim Dergisi}, issn = {}, eissn = {2147-9844}, address = {Kastamonu Üniversitesi}, year = {2018}, volume = {26}, pages = {2189 - 2201}, doi = {10.24106/kefdergi.2990}, title = {Uzamsal Yetenek Belirlemek İçin Hangi Tür Sorular Kullanılmalıdır?}, key = {cite}, author = {Kepceoğlu, İbrahim and Ercan, Niyazi Öner} }
APA Kepceoğlu, İ , Ercan, N . (2018). Uzamsal Yetenek Belirlemek İçin Hangi Tür Sorular Kullanılmalıdır?. Kastamonu Eğitim Dergisi, 26 (6), 2189-2201. DOI: 10.24106/kefdergi.2990
MLA Kepceoğlu, İ , Ercan, N . "Uzamsal Yetenek Belirlemek İçin Hangi Tür Sorular Kullanılmalıdır?". Kastamonu Eğitim Dergisi 26 (2018): 2189-2201 <http://dergipark.gov.tr/kefdergi/issue/40303/479918>
Chicago Kepceoğlu, İ , Ercan, N . "Uzamsal Yetenek Belirlemek İçin Hangi Tür Sorular Kullanılmalıdır?". Kastamonu Eğitim Dergisi 26 (2018): 2189-2201
RIS TY - JOUR T1 - Uzamsal Yetenek Belirlemek İçin Hangi Tür Sorular Kullanılmalıdır? AU - İbrahim Kepceoğlu , Niyazi Öner Ercan Y1 - 2018 PY - 2018 N1 - doi: 10.24106/kefdergi.2990 DO - 10.24106/kefdergi.2990 T2 - Kastamonu Eğitim Dergisi JF - Journal JO - JOR SP - 2189 EP - 2201 VL - 26 IS - 6 SN - -2147-9844 M3 - doi: 10.24106/kefdergi.2990 UR - http://dx.doi.org/10.24106/kefdergi.2990 Y2 - 2018 ER -
EndNote %0 Kastamonu Eğitim Dergisi Uzamsal Yetenek Belirlemek İçin Hangi Tür Sorular Kullanılmalıdır? %A İbrahim Kepceoğlu , Niyazi Öner Ercan %T Uzamsal Yetenek Belirlemek İçin Hangi Tür Sorular Kullanılmalıdır? %D 2018 %J Kastamonu Eğitim Dergisi %P -2147-9844 %V 26 %N 6 %R doi: 10.24106/kefdergi.2990 %U 10.24106/kefdergi.2990
ISNAD Kepceoğlu, İbrahim , Ercan, Niyazi Öner . "Uzamsal Yetenek Belirlemek İçin Hangi Tür Sorular Kullanılmalıdır?". Kastamonu Eğitim Dergisi 26 / 6 (Kasım 2018): 2189-2201. http://dx.doi.org/10.24106/kefdergi.2990