Yıl 2018, Cilt 10, Sayı 19, Sayfalar 572 - 592 2018-11-26

HİSSE SENEDİ GETİRİLERİNİN TAHMİNİNDE YAPAY SİNİR AĞI MODELİ KULLANIMI: İMKB’DE BİR UYGULAMA

Faruk DAYI [1]

15 21

Hisse senedi getirilerini tahmin etmek amacıyla yapılan çalışmalar incelendiğinde, YSA modelinin daha başarılı sonuçlar verdiği görülmektedir. İMKB’de işlem gören imalat şirketlerinin hisse senedi getirilerini tahmin etmek amacıyla gerçekleştirilen bu çalışmada, 1986 yılından itibaren işlem görmeye başlayan firmaların verileri kullanılmak istenmiştir. Ancak İMKB veri tabanından 1991 yılından önceki verilere ulaşmak mümkün olmadığı için, analiz dönemi 1991-2010 dönemi olarak belirlenmiştir. Çalışma kapsamında 2008, 2009 ve 2010 yıllarına ait hisse senedi getirilerindeki değişim, Statik ve Dinamik YSA modelleri ile tahmin edilmiş ve aynı yıl gerçekleşen gerçek değerlerle karşılaştırılarak modelin performansı ölçülmüştür. Hisse senedi getirilerinin tahmininde Dinamik YSA modelinin daha başarılı bir yöntem olduğu tespit edilmiştir.

Hisse Senedi getirisi, Menkul Kıymetler Borsası, Yapay sinir ağları
  • ANDERSON, D. and NCNEIL, G. (1992). Artifical Neural Networks Technology, Kaman Sciences Corporation, New York.
  • ANDREESCU, A. (2004). Forecast Corporate Earnings: A Data Mining Approach, MSc Thesis in Accounting, The Swedish School of Economics and Business Administration.
  • AVCI, E. (2009). “Stock Return Forecasts with Artifical Neural Network Models”, Marmara Üniversitesi İ.İ.B.F. Dergisi, 26(1). 443-461.
  • BAYRAMOĞLU, M. F. (2007). Finansal Endekslerin Öngörüsünde Yapay Sinir Ağı Modellerinin Kullanılması: İMKB Ulusal 100 Endeksinin Gün içi En Yüksek ve En Düşük Değerlerinin Öngörüsü Üzerine Bir Uygulama, Yüksek Lisans Tezi, Zonguldak Karaelmas Üniversitesi Sosyal Bilimler Enstitüsü, Zonguldak.
  • BOATRIGHT, J.R. (2010). Finance Ethics Critical Issues in Theory and Practice, JohnWiley & Sons, Inc., Canada.
  • BRIGHAM, F.E. and HOUSTON, J.E. (2004). Fundamentals of Financial Management, Thomson Learning Inc., USA.
  • DOĞAN, V. (2006). Forecasting Stock Market Return Using Artfiical Neural Networks, Yüksek Lisans Tezi, Boğaziçi Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • ELMAS, Ç. (2007). Yapay Zekâ Uygulamaları (Yapay Sinir Ağları, Bulanık Mantık ve Genetik Algoritma), Seçkin Yayınevi, Ankara.
  • ENKE, D. and THAWORNWONG, S. (2005). “The Use Of Data Mining And Neural Networks For Forecasting Stock Market Returns”, Expert Systems with Applications, 29(4), 927-940.
  • GENÇAY, R. (1996). “Non-Linear Prediction of Security Returns with Moving Average Rules”, Journal of Forecasting, 15, 165-174.
  • KANAS, A. and YANNOPOULOS, A. (2001). “Comparing Linear and Nonlinear Forecasts For Stock Returns”, International Review of Economic and Finance, 10, 383-398.
  • KANAS, A. (2003). Non-Linear Forecasts of Stock Returns, John Wiley&Sons. Ltd (Published online in Wiley InterScience), USA.
  • KASABOV, N.K. (1998). Foundations of Neural Networks, Fuzzy Systems and Knowledge Engineering (Second Edition), The MIT Press, USA.
  • KANAS, A. (2001). “Neural Network Linear Forecasts For Stock Returns”, Internatioanal Journal of Finance and Economics, 6, 245-254.
  • OLSON, D. and MOSSMAN, C. (2003). “Neural Network Forecasts of Canadian Stock Returns Using Accounting Ratios”, International Journal of Forecasting, 19, 453-465.
  • ÖZALP, A.ve ANAGÜN, A.S. (2001). “Sektörel Hisse Senedi Tahmininde Yapay Sinir Ağı Yaklaşımı ve Klasik Tahminleme Yöntemleri ile Karşılaştırılması”, Endüstri Mühendisliği Dergisi, 3(4), 2-17.
  • ÖZTEMEL, E. (2006). Yapay Sinir Ağları, Papatya Yayıncılık, İstanbul.
  • SEYİDOĞLU, H. (2003). Uluslararası Finans (4.Baskı), Güzem Can Yayınları, İstanbul.
  • SKOLPADUNGKET, P., DAHAL, K. And HARNPORNCHAI, N. (2009). Forecasting Stock Returns Using Variable Selections with Genetic Algorithm and Artifical Neural Networks, Asia-Pacific Conference on Computational Intelligence and Industrial Applications (PACIIA), China, 28-29 November.
  • ŞEN, Z. (2004). Yapay Sinir İlkeleri, Su Vakfı Yayınları, İstanbul.
  • PANDA, C., and NARASIMHAN, V. (2006) Predicting Stock Returns: An Experiment of The Articical Neural Network in Indian Stock Market, South Asia Economic Journal, 7(2), 375-388.
  • PISSARENKO, D. (2001). Neural Networks For Financial Time Series Prediction: Overwiev Over Recent Research, http://members.inode.at/d.pissarenko/fyp/Pissarenko2002.pdf, (Son Erişim Tarihi: 16.02.2011).
  • RAPACH, D.E. and WOHAR, M.E. (2006). “In-Sample vs. Out-Of-Sample Tests of Stock Return Predictability In The Context Of Data Mining”, Journal of Empirical Finance, 13, 231-247.
  • USTA, Ö. (2005). İşletme Finansı ve Finansal Yönetim (2.Baskı), Detay Yayıncılık, Ankara.
  • WHITE, H. (1988). “Economic Prediction Using Neural Networks: The Case of IBM Daily Stock Returns”, Proceedings of the IEEE International Conference on Neural Networks, 451-458.
Birincil Dil tr
Konular Sosyal
Dergi Bölümü MAKALELER
Yazarlar

Orcid: 0000-0003-0903-1500
Yazar: Faruk DAYI (Sorumlu Yazar)
Kurum: KASTAMONU ÜNİVERSİTESİ
Ülke: Turkey


Bibtex @araştırma makalesi { kilisiibfakademik442843, journal = {Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD)}, issn = {1309-3762}, eissn = {2149-1585}, address = {Kilis 7 Aralık Üniversitesi}, year = {2018}, volume = {10}, pages = {572 - 592}, doi = {10.20990/kilisiibfakademik.442843}, title = {HİSSE SENEDİ GETİRİLERİNİN TAHMİNİNDE YAPAY SİNİR AĞI MODELİ KULLANIMI: İMKB’DE BİR UYGULAMA}, key = {cite}, author = {DAYI, Faruk} }
APA DAYI, F . (2018). HİSSE SENEDİ GETİRİLERİNİN TAHMİNİNDE YAPAY SİNİR AĞI MODELİ KULLANIMI: İMKB’DE BİR UYGULAMA. Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD), 10 (19), 572-592. DOI: 10.20990/kilisiibfakademik.442843
MLA DAYI, F . "HİSSE SENEDİ GETİRİLERİNİN TAHMİNİNDE YAPAY SİNİR AĞI MODELİ KULLANIMI: İMKB’DE BİR UYGULAMA". Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD) 10 (2018): 572-592 <http://dergipark.gov.tr/kilisiibfakademik/issue/40595/442843>
Chicago DAYI, F . "HİSSE SENEDİ GETİRİLERİNİN TAHMİNİNDE YAPAY SİNİR AĞI MODELİ KULLANIMI: İMKB’DE BİR UYGULAMA". Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD) 10 (2018): 572-592
RIS TY - JOUR T1 - HİSSE SENEDİ GETİRİLERİNİN TAHMİNİNDE YAPAY SİNİR AĞI MODELİ KULLANIMI: İMKB’DE BİR UYGULAMA AU - Faruk DAYI Y1 - 2018 PY - 2018 N1 - doi: 10.20990/kilisiibfakademik.442843 DO - 10.20990/kilisiibfakademik.442843 T2 - Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD) JF - Journal JO - JOR SP - 572 EP - 592 VL - 10 IS - 19 SN - 1309-3762-2149-1585 M3 - doi: 10.20990/kilisiibfakademik.442843 UR - http://dx.doi.org/10.20990/kilisiibfakademik.442843 Y2 - 2018 ER -
EndNote %0 Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD) HİSSE SENEDİ GETİRİLERİNİN TAHMİNİNDE YAPAY SİNİR AĞI MODELİ KULLANIMI: İMKB’DE BİR UYGULAMA %A Faruk DAYI %T HİSSE SENEDİ GETİRİLERİNİN TAHMİNİNDE YAPAY SİNİR AĞI MODELİ KULLANIMI: İMKB’DE BİR UYGULAMA %D 2018 %J Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD) %P 1309-3762-2149-1585 %V 10 %N 19 %R doi: 10.20990/kilisiibfakademik.442843 %U 10.20990/kilisiibfakademik.442843
ISNAD DAYI, Faruk . "HİSSE SENEDİ GETİRİLERİNİN TAHMİNİNDE YAPAY SİNİR AĞI MODELİ KULLANIMI: İMKB’DE BİR UYGULAMA". Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD) 10 / 19 (Kasım 2018): 572-592. http://dx.doi.org/10.20990/kilisiibfakademik.442843