Yıl 2017, Cilt 5, Sayı 2, Sayfalar 87 - 95 2017-10-15

The present study deals with some new properties for the generalized heat polynomials. The results obtained here include various families of multilinear and multilateral generating functions, miscellaneous properties and also some special cases for these polynomials. In addition, we derive a theorem giving certain families of bilateral generating functions for the generalized Heat polynomials and the generalized Lauricella functions. Finally, we get several interesting results of this theorem.
Generalized Heat polynomials, generating function, multilinear and multilateral generating function
  • [1] Liu, S.-J. , Lin, S.-D., Srivastava, H.M. and Wong, M.-M. , Bilateral generating functions for the Erkus-Srivastava polynomials and the generalized Lauricella functions, App. Mathematcis and Comp., 218 (2012) 7685-7693.
  • [2] Srivastava, H. M. and Manocha, H. L. A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, 1984.
  • [3] Srivastava, H. M. and Daoust, M.C. Certain generalized Neumann expansions associated with the Kampe de Feriet function, Nederl. Akad. Westensch. Indag. Math. 31 (1969) 449-457.
  • [4] Erdelyi, A., Magnus, W., Oberhettinger F. and Tricomi, F. G.,Higher Transcendental Functions, Vol. II, McGraw-Hill Book Company, New York, Toronto and London, 1955.
  • [5] Ozmen, N. and Erkus-Duman, E., On the Poisson-Charlier polynomials, Serdica Math. J. 41. (2015), 457-470.
  • [6] Ozmen, N. and Erkus-Duman, E., Some families of generating functions for the generalized Cesaro polynomials, J. Comput. Anal. Appl., 25(4) (2018), 670-683.
  • [7] Chan, W.-C. C. , Chyan, C.-J. and Srivastava, H. M. The Lagrange polynomials in several variables, Integral Transforms Spec. Funct. 12 (2001), 139-148.
  • [8] Erkus, E. and Srivastava, H. M, A uni ed presentation of some families of multivariable polynomials, Integral Transform Spec. Funct. 17 (2006), 267-273.
  • [9] Ozmen, N. and Erkus-Duman, E., Some results for a family of multivariable polynomials, AIP Conference Proceedings, 1558, 1124 (2013).
  • [10] AktaŞ, R. and Erkus-Duman, E., \The Laguerre polynomials in several variables", Mathematica Slovaca, 63(3), (2013), 531-544.
  • [11] Kravchenko, I-V.,Kravchenko, V-V. and Torba, S-M., Solution of parabolic free boundary problems using transmuted heat polynomials, arXiv:1706.07100v2 [math.AP] 19 Jul 2017.
Konular Mühendislik ve Temel Bilimler
Dergi Bölümü Articles
Yazarlar

Yazar: NEJLA ÖZMEN
Ülke: Turkey


Bibtex @araştırma makalesi { konuralpjournalmath332442, journal = {Konuralp Journal of Mathematics}, issn = {}, eissn = {2147-625X}, address = {Mehmet Zeki SARIKAYA}, year = {2017}, volume = {5}, pages = {87 - 95}, doi = {}, title = {GENERALIZED HEAT POLYNOMIALS}, key = {cite}, author = {ÖZMEN, NEJLA} }
APA ÖZMEN, N . (2017). GENERALIZED HEAT POLYNOMIALS. Konuralp Journal of Mathematics, 5 (2), 87-95. Retrieved from http://dergipark.gov.tr/konuralpjournalmath/issue/28490/332442
MLA ÖZMEN, N . "GENERALIZED HEAT POLYNOMIALS". Konuralp Journal of Mathematics 5 (2017): 87-95 <http://dergipark.gov.tr/konuralpjournalmath/issue/28490/332442>
Chicago ÖZMEN, N . "GENERALIZED HEAT POLYNOMIALS". Konuralp Journal of Mathematics 5 (2017): 87-95
RIS TY - JOUR T1 - GENERALIZED HEAT POLYNOMIALS AU - NEJLA ÖZMEN Y1 - 2017 PY - 2017 N1 - DO - T2 - Konuralp Journal of Mathematics JF - Journal JO - JOR SP - 87 EP - 95 VL - 5 IS - 2 SN - -2147-625X M3 - UR - Y2 - 2017 ER -
EndNote %0 Konuralp Journal of Mathematics GENERALIZED HEAT POLYNOMIALS %A NEJLA ÖZMEN %T GENERALIZED HEAT POLYNOMIALS %D 2017 %J Konuralp Journal of Mathematics %P -2147-625X %V 5 %N 2 %R %U
ISNAD ÖZMEN, NEJLA . "GENERALIZED HEAT POLYNOMIALS". Konuralp Journal of Mathematics 5 / 2 (Ekim 2017): 87-95.