Yıl 2017, Cilt 5, Sayı 2, Sayfalar 102 - 113 2017-10-15

$k$-FIBONACCI AND $k$-LUCAS GENERALIZED QUATERNIONS

GÖKSAL BİLGİCİ [1] , ÜMİT TOKAŞER [2] , ZAFER ÜNAL [3]

81 291

We investigate the properties of $k-$Fibonacci and $k-$Lucas quaternions over the generalized quaternion algebra. After presenting generating functions and Binet's formulas for these types of quaternions, we calculate several well-known identities such as Catalan's, Cassini's and d'Ocagne's identities for $k-$Fibonacci and $k-$Lucas generalized quaternions.

$k$-Fibonacci number, $k$-Lucas number, generalized quaternion
  • [1] Akyigit, M., Kosal, H.H. and Tosun, M., Split Fibonacci Quaternions, Adv. Appl. Clifford Algebr. Vol:23 (2014), 535-545.
  • [2] Akyigit, M., Kosal, H.H. and Tosun, M., Fibonacci Generalized Quaternions, Adv. Appl. Clifford Algebr. Vol:24 (2014), 631-641.
  • [3] Cimen, C.B. and Ipek, A., On Pell Quaternions and Pell-Lucas Quaternions, Adv. Appl. Clifford Algebr., Vol:26 (2016), 39-51.
  • [4] Catarino, P., The Modi ed Pell and the Modi ed k-Pell Quaternions and Octonions, Adv. Appl. Clifford Algebr., Vol:26 (2016), 577-590.
  • [5] Catarino, P. and Vasco, P., On Dual k􀀀Pell Quaternions and Octonions, Mediterr. J. Math., Vol:14 (2017), 75-87.
  • [6] Falcon, S. and Plaza, A., The k-Fibonacci Sequence and the Pascal 2-Triangle, Chaos Solitons Fractals, Vol:33, No.1 (2007), 38-49.
  • [7] Falcon, S., On the k-Lucas Numbers, Int. J. Contemp. Math. Sci. Vol:21 (2011), 1039-1050.
  • [8] Halici, S., On Fibonacci Quaternions, Adv. Appl. Clifford Algebr. Vol:22 (2012), 321-327.
  • [9] Harman, C.J., Complex Fibonacci Numbers, Fibonacci Quart. Vol:19, No.1 (1981), 82-86. [10] Horadam, A. F. , Complex Fibonacci Numbers and Fibonacci Quaternions, Amer. Math. Monthly No:70 (1963), 289-291.
  • [11] Iyer, M. R., Some Result on Fibonacci Quaternions, Fibonacci Quart. Vol:7, No.2 (1969), 201-210.
  • [12] Koshy, T., Fibonacci and Lucas Numbers with Applications, A Wiley-Interscience Publication, Canada, 2001.
  • [13] Koshy, T., Pell and Pell-Lucas Numbers with Applications, Springer-Verlag New York, USA, 2014.
  • [14] Polatli,E., Kizilates, C. and Kesim, S., On Split k􀀀Fibonacci and k-Lucas Quaternions, Adv. Appl. Clifford Algebr. Vol:26 (2016), 353-362.
  • [15] Polatli, E. and Kesim, S., A Note on Catalan's Identity for the k􀀀 Fibonacci Quaternions, J. Integer Seq. Vol:18 (Article 15.8.2 ) (2015), 1-4.
  • [16] Ramirez, J. L., Some Combinatorial Properties of the k-Fibonacci and the k-Lucas Quaternions, An. St. Univ. Ovidius Constanta Ser. Mat. Vol:23 No.2 (2015), 201-212.
  • [17] Tokeser, U., Unal, Z. and Bilgici, G., Split Pell and Split Pell-Lucas Quaternions, Adv. Appl. Clifford Algebr. Vol: 27 (2017), 1881-1893.
  • [18] Szynal-Liana, A. and Wloch, I. The Pell Quaternions and the Pell Octonions, Adv. Appl. Clifford Algebr. Vol:26 (2016), 435-440.
Konular Mühendislik ve Temel Bilimler
Dergi Bölümü Articles
Yazarlar

Yazar: GÖKSAL BİLGİCİ
E-posta: gbilgici@kastamonu.edu.tr
Ülke: Turkey


Yazar: ÜMİT TOKAŞER
E-posta: utokeser@kastamonu.edu.tr
Ülke: Turkey


Yazar: ZAFER ÜNAL
E-posta: zunal@kastamonu.edu.tr
Ülke: Turkey


Bibtex @araştırma makalesi { konuralpjournalmath344404, journal = {Konuralp Journal of Mathematics}, issn = {}, address = {Mehmet Zeki SARIKAYA}, year = {2017}, volume = {5}, pages = {102 - 113}, doi = {}, title = {\$k\$-FIBONACCI AND \$k\$-LUCAS GENERALIZED QUATERNIONS}, key = {cite}, author = {TOKAŞER, ÜMİT and ÜNAL, ZAFER and BİLGİCİ, GÖKSAL} }
APA BİLGİCİ, G , TOKAŞER, Ü , ÜNAL, Z . (2017). $k$-FIBONACCI AND $k$-LUCAS GENERALIZED QUATERNIONS. Konuralp Journal of Mathematics, 5 (2), 102-113. Retrieved from http://dergipark.gov.tr/konuralpjournalmath/issue/28490/344404
MLA BİLGİCİ, G , TOKAŞER, Ü , ÜNAL, Z . "$k$-FIBONACCI AND $k$-LUCAS GENERALIZED QUATERNIONS". Konuralp Journal of Mathematics 5 (2017): 102-113 <http://dergipark.gov.tr/konuralpjournalmath/issue/28490/344404>
Chicago BİLGİCİ, G , TOKAŞER, Ü , ÜNAL, Z . "$k$-FIBONACCI AND $k$-LUCAS GENERALIZED QUATERNIONS". Konuralp Journal of Mathematics 5 (2017): 102-113
RIS TY - JOUR T1 - $k$-FIBONACCI AND $k$-LUCAS GENERALIZED QUATERNIONS AU - GÖKSAL BİLGİCİ , ÜMİT TOKAŞER , ZAFER ÜNAL Y1 - 2017 PY - 2017 N1 - DO - T2 - Konuralp Journal of Mathematics JF - Journal JO - JOR SP - 102 EP - 113 VL - 5 IS - 2 SN - -2147-625X M3 - UR - Y2 - 2017 ER -
EndNote %0 Konuralp Journal of Mathematics $k$-FIBONACCI AND $k$-LUCAS GENERALIZED QUATERNIONS %A GÖKSAL BİLGİCİ , ÜMİT TOKAŞER , ZAFER ÜNAL %T $k$-FIBONACCI AND $k$-LUCAS GENERALIZED QUATERNIONS %D 2017 %J Konuralp Journal of Mathematics %P -2147-625X %V 5 %N 2 %R %U