Yıl 2018, Cilt 6, Sayı 1, Sayfalar 171 - 177 2018-04-15

Musical Isomorphisms on the Semi-Tensor Bundles

Semra Yurttançıkmaz [1] , Furkan Yıldırım [2]

46 67

We transfer vertical lifts and complete lifts of some tensor fields from the semi-tangent bundle $tM$ to the semi-cotangent bundle $t^{\ast }M$ \ using a musical isomorphism between these bundles. In this article, we also analyze complete lift of vector and affinor (tensor of type $(1,1)$) fields for semi-tangent (pull-back) bundle $tM$. Finally, we study compatibility of transferring lifts with complete lifts in the semi-cotangent bundle $t^{\ast }M$.
Semi-tensor bundle, complete lift, musical isomorphism, vector field, pull-back bundle
  • [1] A. A. Salimov, E. Kadioglu Lifts of derivations to the semitangent bundle. Turk J Math 2000; 24: 259-266.
  • [2] D. Husem¨oller, Fibre Bundles. New York, NY, USA: Springer, 1994.
  • [3] F. Yildirim, On a special class of semi-cotangent bundle, Proceedings of the Institute of Mathematics and Mechanics, (ANAS) 41 (2015), no. 1, 25-38.
  • [4] F. Yildirim and A. Salimov, Semi-cotangent bundle and problems of lifts, Turk J. Math, (2014), 38, 325-339.
  • [5] H.B. Lawson and M.L. Michelsohn, Spin Geometry, Princeton University Press., Princeton, 1989.
  • [6] K. Yano and S. Ishihara, Tangent and Cotangent Bundles , Marcel Dekker, Inc., New York, 1973.
  • [7] N. Steenrod, The Topology of Fibre Bundles. Princeton University Press., Princeton, 1951.
  • [8] R. Cakan, K. Akbulut, A. Salimov, Musical isomorphisms and problems of lifts, Chin. Ann. Math. Ser. B. (2016) 37: 323.
  • [9] T.V. Duc, Structure presque-transverse. J. Diff. Geom., 14(1979), No:2, 215-219.
  • [10] V. V. Vishnevskii, Integrable affinor structures and their plural interpretations, Geometry, 7.J. Math. Sci., (New York) 108 (2002), no. 2, 151-187.
  • [11] V. Vishnevskii, A.P. Shirokov and V.V. Shurygin, Spaces over Algebras. Kazan. Kazan Gos. Univ. 1985 (in Russian).
Birincil Dil en
Konular Mühendislik
Dergi Bölümü Articles
Yazarlar

Yazar: Semra Yurttançıkmaz
Kurum: ATATÜRK ÜNİVERSİTESİ
Ülke: Turkey


Yazar: Furkan Yıldırım
Kurum: Atatürk University
Ülke: Turkey


Bibtex @araştırma makalesi { konuralpjournalmath325434, journal = {Konuralp Journal of Mathematics}, issn = {}, eissn = {2147-625X}, address = {Mehmet Zeki SARIKAYA}, year = {2018}, volume = {6}, pages = {171 - 177}, doi = {}, title = {Musical Isomorphisms on the Semi-Tensor Bundles}, key = {cite}, author = {Yurttançıkmaz, Semra and Yıldırım, Furkan} }
APA Yurttançıkmaz, S , Yıldırım, F . (2018). Musical Isomorphisms on the Semi-Tensor Bundles. Konuralp Journal of Mathematics, 6 (1), 171-177. Retrieved from http://dergipark.gov.tr/konuralpjournalmath/issue/31478/325434
MLA Yurttançıkmaz, S , Yıldırım, F . "Musical Isomorphisms on the Semi-Tensor Bundles". Konuralp Journal of Mathematics 6 (2018): 171-177 <http://dergipark.gov.tr/konuralpjournalmath/issue/31478/325434>
Chicago Yurttançıkmaz, S , Yıldırım, F . "Musical Isomorphisms on the Semi-Tensor Bundles". Konuralp Journal of Mathematics 6 (2018): 171-177
RIS TY - JOUR T1 - Musical Isomorphisms on the Semi-Tensor Bundles AU - Semra Yurttançıkmaz , Furkan Yıldırım Y1 - 2018 PY - 2018 N1 - DO - T2 - Konuralp Journal of Mathematics JF - Journal JO - JOR SP - 171 EP - 177 VL - 6 IS - 1 SN - -2147-625X M3 - UR - Y2 - 2018 ER -
EndNote %0 Konuralp Journal of Mathematics Musical Isomorphisms on the Semi-Tensor Bundles %A Semra Yurttançıkmaz , Furkan Yıldırım %T Musical Isomorphisms on the Semi-Tensor Bundles %D 2018 %J Konuralp Journal of Mathematics %P -2147-625X %V 6 %N 1 %R %U
ISNAD Yurttançıkmaz, Semra , Yıldırım, Furkan . "Musical Isomorphisms on the Semi-Tensor Bundles". Konuralp Journal of Mathematics 6 / 1 (Nisan 2018): 171-177.