Two Dimensional Cebysev Type Inequalities for Functions Whose Second Derivatives are Co-ordinated $\left( h_{1},h_{2}\right) $-Preinvex

Badreddine Meftah [1]

16 25

In this paper, we extend the identity established in \cite{2} for preinvex functions. Using this novel identity we establish some new Cebysev  type inequalities involving functions of two independent variable whose mixed derivatives are co-ordinated $(h_{1},h_{2})$-preinvex.

Cebysev type inequalities, co-ordinated (h_{1};h_{2})-preinvex, integral inequality
  • [1] F. Ahmad, N. S. Barnett and S. S. Dragomir, New weighted Ostrowski and Cˇ ebysˇev type inequalities. Nonlinear Anal. 71 (2009), no. 12, e1408–e1412.
  • [2] N. S. Barnett and S. S. Dragomir, An Ostrowski type inequality for double integrals and applications for cubature formulae. Soochow J. Math. 27 (2001), no. 1, 1–10.
  • [3] A. Ben-Israel and B. Mond, What is invexity? J. Austral. Math. Soc. Ser. B 28 (1986), no. 1, 1–9.
  • [4] P. L. Cˇ ebysˇev, Sur les expressions approximatives des inte´grales de´finies par les autres prises entre les meˆmes limites, Proc. Math. Soc. Charkov. 2 (1882), 93-98.
  • [5] A. Guezane-Lakoud and F. Aissaoui, New Cˇ ebysˇev type inequalities for double integrals. J. Math. Inequal. 5 (2011), no. 4, 453–462.
  • [6] M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80 (1981), no. 2, 545–550.
  • [7] M. A. Latif and S.S. Dragomir, Some Hermite-Hadamard type inequalities for functions whose partial derivatives in absolute value are preinvex on the co-ordinates. Facta Univ. Ser. Math. Inform. 28 (2013), no. 3, 257–270.
  • [8] M. Matloka, On some Hadamard-type inequalities for (h1;h2)-preinvex functions on the co-ordinates. J. Inequal. Appl. 2013, 2013:227, 12 pp.
  • [9] B. Meftah and K. Boukerrioua, New Cˇ ebysˇev Type Inequalities for Functions whose Second Derivatives are (s1;m1)-(s2;m2)-convex on the coordinates. Theory Appl. Math. Comput. Sci. 5 (2015), no. 2, 116–125.
  • [10] B. Meftah and K. Boukerrioua, Cˇ ebysˇev type inequalities whose second derivatives are (s; r)-convex on the co-ordinates. J. Adv. Res. Appl. Math. 7 (2015), no. 3, 76–87.
  • [11] B. Meftah and K. Boukerrioua, On some Cˇ ebysˇev type inequalities for functions whose second derivatives are (h1;h2)-convex on the co-ordinates. Konuralp J. Math. 3 (2015), no. 2, 77–88.
  • [12] B. Meftah and R. Haouam, . On some Cˇ ebysˇev type inequalities for functions whose second derivatives are co-ordinated logarithmically convex. Int. J. Open Problems Compt. Math. 9 (2016), no. 4, 57-65.
  • [13] M. A. Noor, Variational-like inequalities. Optimization 30 (1994), no. 4, 323–330.
  • [14] M. A. Noor, Invex equilibrium problems. J. Math. Anal. Appl. 302 (2005), no. 2, 463–475.
  • [15] M. A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions. J. Math. Anal. Approx. Theory 2 (2007), no. 2, 126–131.
  • [16] M. A. Noor, Hadamard integral inequalities for product of two preinvex functions. Nonlinear Anal. Forum 14 (2009), 167–173.
  • [17] M. A. Noor, K. I. Noor, M. U. Awan and J. Li, On Hermite-Hadamard inequalities for h-preinvex functions. Filomat 28 (2014), no. 7, 1463–1474.
  • [18] M. A. Noor, K. I. Noor, M. U. Awan and F. Qi, Integral inequalities of Hermite-Hadamard type for logarithmically h-preinvex functions. Cogent Math. 2 (2015), Art. ID 1035856, 10 pp.
  • [19] B. G. Pachpatte, On Chebyshev type inequalities involving functions whose derivatives belong to Lp spaces. JIPAM. J. Inequal. Pure Appl. Math. 7 (2006), no. 2, Article 58, 6 pp.
  • [20] B. G. Pachpatte, On Cˇ ebysˇev-Gru¨ss type inequalities via Pecˇaric´’s extension of the Montgomery identity. JIPAM. J. Inequal. Pure Appl. Math. 7 (2006), no. 1, Article 11, 4 pp.
  • [21] R. Pini, Invexity and generalized convexity. Optimization 22 (1991), no. 4, 513–525.
  • [22] M. Z. Sarikaya, H. Budak and H. Yaldiz, Cˇ ebysev type inequalities for co-ordinated convex functions, Pure and Applied Mathematics Letters. 2 (2014), no. 8, 44-48.
  • [23] M. Z. Sarikaya, N. Alp and H. Bozkurt, On Hermite-Hadamard type integral inequalities for preinvex and log-preinvex functions, Contemporary Anal. Appl. Math., 1 (2013), 237–252.
  • [24] T. Weir and B. Mond, Pre-invex functions in multiple objective optimization. J. Math. Anal. Appl. 136 (1988), no. 1, 29–38.
  • [25] X. -M. Yang and D. Li, On properties of preinvex functions. J. Math. Anal. Appl. 256 (2001), no. 1, 229–241.
Birincil Dil en
Konular Mühendislik ve Temel Bilimler
Dergi Bölümü Articles
Yazarlar

Orcid: 0000-0002-0156-7864
Yazar: Badreddine Meftah
E-posta: badrimeftah@yahoo.fr
Ülke: Algeria


Bibtex @araştırma makalesi { konuralpjournalmath330398, journal = {Konuralp Journal of Mathematics}, issn = {}, address = {Mehmet Zeki SARIKAYA}, year = {}, volume = {6}, pages = {76 - 83}, doi = {}, title = {Two Dimensional Cebysev Type Inequalities for Functions Whose Second Derivatives are Co-ordinated \$\\left( h\_\{1\},h\_\{2\}\\right) \$-Preinvex}, key = {cite}, author = {Meftah, Badreddine} }
APA Meftah, B . (). Two Dimensional Cebysev Type Inequalities for Functions Whose Second Derivatives are Co-ordinated $\left( h_{1},h_{2}\right) $-Preinvex. Konuralp Journal of Mathematics, 6 (1), 76-83. Retrieved from http://dergipark.gov.tr/konuralpjournalmath/issue/31478/330398
MLA Meftah, B . "Two Dimensional Cebysev Type Inequalities for Functions Whose Second Derivatives are Co-ordinated $\left( h_{1},h_{2}\right) $-Preinvex". Konuralp Journal of Mathematics 6 (): 76-83 <http://dergipark.gov.tr/konuralpjournalmath/issue/31478/330398>
Chicago Meftah, B . "Two Dimensional Cebysev Type Inequalities for Functions Whose Second Derivatives are Co-ordinated $\left( h_{1},h_{2}\right) $-Preinvex". Konuralp Journal of Mathematics 6 (): 76-83
RIS TY - JOUR T1 - Two Dimensional Cebysev Type Inequalities for Functions Whose Second Derivatives are Co-ordinated $\left( h_{1},h_{2}\right) $-Preinvex AU - Badreddine Meftah Y1 - 2018 PY - 2018 N1 - DO - T2 - Konuralp Journal of Mathematics JF - Journal JO - JOR SP - 76 EP - 83 VL - 6 IS - 1 SN - -2147-625X M3 - UR - Y2 - 2018 ER -
EndNote %0 Konuralp Journal of Mathematics Two Dimensional Cebysev Type Inequalities for Functions Whose Second Derivatives are Co-ordinated $\left( h_{1},h_{2}\right) $-Preinvex %A Badreddine Meftah %T Two Dimensional Cebysev Type Inequalities for Functions Whose Second Derivatives are Co-ordinated $\left( h_{1},h_{2}\right) $-Preinvex %D 2018 %J Konuralp Journal of Mathematics %P -2147-625X %V 6 %N 1 %R %U