Yıl 2018, Cilt 6, Sayı 1, Sayfalar 49 - 53 2018-04-15

A Further Note on the Graph of Monogenic Semigroups

Nihat Akgüneş [1]

79 90

In [15], it has been recently defined a new graph $\Gamma ({% \mathcal{S}}_{M})$ on monogenic semigroups ${\mathcal{S}}_{M}$ (with zero) having elements $\{0,x,x^{2},x^{3},\cdots ,x^{n}\}$. The vertices are the non-zero elements $x,x^{2},x^{3},\cdots ,x^{n}$ and, for $1\leq i,j\leq n$, any two distinct vertices $x^{i}$ and $x^{j}$ are adjacent if $x^{i}x^{j}=0$ in ${\mathcal{S}}_{M}$. As a continuing study of [3] and [15], in this paper it will be investigated some special parameters (such as covering number, accessible number, independence number), first and second multiplicative Zagreb indices, and Narumi-Katayama index. Furthermore, it will be presented Laplacian eigenvalue and Laplacian characteristic polynomial for $\Gamma ({\mathcal{S}}_{M})$.

Laplacian Polynomial, Narumi-Katayama Index, Monogenic Semigroups, Graph, Laplacian Eigenvalue, Narumi-Katayama Index
  • [1] S. Akbari, H. R. Maimani, S. Yassemi, When a Zero-Divisor Graph is Planar or a Complete r-Partite Graph, J. Algebra, 270 (2003) 169-180.
  • [2] A.S. C¸ evik, Ch. K. Das, I. Gutman, On the Laplacian-Energy-Like Invariant, Linear Algebra and its Applications, Vol 442, 58–68 (2014) DOI: 10.1016/j.laa.2013.05.002.
  • [3] N. Akgunes, K. Ch. Das, A. S. Cevik, Topological indices on a graph of monogenic semigroups, Chapter in the book: Topics in Chemical Graph Theory in Mathematical Chemistry Monographs (Edt. I. Gutman), pp 3-20, No. 16a, Publisher: University of Kragujevac and Faculty of Science Kragujevac, Kragujevac, 2014.
  • [4] D.F. Anderson, P.S. Livingston, The Zero-divisor Graph of Commutative Ring, J. Algebra, 217 (1999) 434-447.
  • [5] D.F. Anderson, A. Badawi, On the Zero-Divisor Graph of a Ring, Comm. Algeb. 36-8 (2008) 3073-3092.
  • [6] D. D. Anderson, M. Naseer, Beck’s coloring of a commutative ring, J. Algebra, 159 (1991) 500-514.
  • [7] D. Babi´c, D.J. Klein, I. Lukovits, S. Nikoli´c, N. Trinajsti´c, Resistance-Distance Matrix: A Computational Algorithm and Its Applications. Int. J. Quant. Chem., 90 (2002), 166-176.
  • [8] I. Beck, Coloring of Commutating Ring, J. Algebra, 116 (1988) 208-226.
  • [9] J. Braun, A. Kerber, M. Meringer, C. Rucker, Similarity of molecular descriptors: The equivalence of Zagreb indices and walk counts, MATCH Commun. Math. Comput.Chem., 54 (2005) 163-176.
  • [10] B. Bollob´as, Modern Graph Theory, Graduate Texts in Mathematics, Springer, 184 (1998).
  • [11] K. Ch. Das, An improved upper bound for Laplacian graph eigenvalues, Linear Alg. Appl., 368 (2003) 269-278.
  • [12] K. Ch. Das, The Laplacian spectrum of a graph, Compt. & Math. Appl., 48-5 (2004) 715-724.
  • [13] K. Ch. Das, I. Gutman, Estimating the Szeged index, Appl. Math. Lett. 22 (2009) 1680-1684.
  • [14] K. Ch. Das, J. M. Guo, Laplacian eigenvalues of the second power of a graph, Disc. Math. 313-5 (2013) 626-634.
  • [15] K.Ch. Das, N. Akgunes, A. S. Cevik, On a graph of monogenic semigroup, J. Ineq. Appl. 2013-44 (2013).
  • [16] F. R. DeMeyer, L. DeMeyer, Zero-Divisor Graphs of Semigroups, J. Algebra, 283 (2005) 190-198.
  • [17] F. R. DeMeyer, T. McKenzie, K. Schneider, The Zero-Divisor Graph of a Commutative Semigroup, Semigroup Forum. 65 (2002) 206-214.
  • [18] M. V. Diudea, Nanomolecules and Nanostructures-Polynomials and Indices, Univ. Kragujevac, Kragujevac, (2010).
  • [19] P. G. Doyle, L. Snell, Random Walks and Electric Networks. Washington, DC: Math. Assoc. Amer., (1984).
  • [20] P. D¨undar, Accessibility number and the neighbor-integrity of generalized Petersen graphs, Neural Network World, 2 (2001) 167-174.
  • [21] M. Eliasi, A. Iranmanesh, I. Gutman, Multiplicative versions of first Zagreb index, MATCH Commun. Math. Comput. Chem., 68 (2012) 217-230.
  • [22] J.L. Gross, J. Yellen, Handbook of Graph Theory, Chapman Hall, CRC Press (2004).
  • [23] I. Gutman, Multiplicative Zagreb indices of trees, Bull. Int. Math. Virt. Inst., 1 (2011) 13-19.
  • [24] I. Gutman, K. Ch. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83-92.
  • [25] I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors-Theory and Applications I, Univ. Kragujevac, (2010).
  • [26] I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors-Theory and Applications II, Univ. Kragujevac, (2010).
  • [27] I. Gutman, M. Ghorbani, Some properties of the Narumi-Katayama index, Appl. Math. Lett. 25-10 (2012) 1435-1438.
  • [28] I. Gutman, B. Ruˇsˇci´c, N. Trinajsti´c, C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys., 62 (1975) 3399-3405.
  • [29] I. Gutman, N. Trinajsti´c, Graph theory and molecular orbitals. Total p-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972) 535-538.
  • [30] J. M. Guo, ”A new upper bound for the Laplacian spectral radius of graphs, Lin. Algeb. Appl., 400 (2005), 61-66.
  • [31] H. Hua, A. R. Ashrafi, L. Zhang, More on Zagreb coindices of graphs, Filomat 26-6 (2012) 1215-1225.
  • [32] S. Li, H. Yang, Q. Zhao, Sharp bounds on Zagreb indices of cacti with k pendant vertices, Filomat 26-6 (2012) 1189-1200.
  • [33] R. Merris, A note on Laplacian graph eigenvalues, Lin. Algeb. Appl., 285-1 (1998) 33-35.
  • [34] H. Narumi, M. Katayama, Simple topological index. A newly devised index characterizing the topological nature of structural isomers of saturated hydrocarbons, Mem. Fac. Engin. Hokkaido Univ., 16 (1984) 209-214.
  • [35] S. Nikoli´c, G. Kovaˇcevi´c, A. Milicevi´c, N. Trinajsti´c, The Zagreb indices 30 years after, Croat. Chem. Acta, 76 (2003) 113-124.
  • [36] R. Todeschini, D. Ballabio, V. Consonni, Novel molecular descriptors based on functions of new vertex degrees. In: Novel molecular structure descriptors-Theory and applications I, I. Gutman, B. Furtula, (eds.) pp. 73-100. Univ. Kragujevac, 2010.
  • [37] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, (2000).
  • [38] R. Todeschini, V. Consonni, New local vertex invariants and molecular descriptors based on functions of the vertex degrees, MATCH Commun. Math. Comput. Chem., 64 (2010) 359-372.
  • [39] S. E. Wright, Lengths of paths and cycles in zero-divisor graphs and digraphs of semi-groups, Comm. Algebra, 35 (2007) 1987-1991.
  • [40] Z. Yarahmadi, A. R. Ashrafi, The Szeged, vertex PI, first and second Zagreb indices of corona product of graphs, Filomat 26-3 (2012) 467-472.
Birincil Dil en
Konular Mühendislik
Dergi Bölümü Articles
Yazarlar

Yazar: Nihat Akgüneş (Sorumlu Yazar)
Ülke: Turkey


Bibtex @araştırma makalesi { konuralpjournalmath407746, journal = {Konuralp Journal of Mathematics}, issn = {}, eissn = {2147-625X}, address = {Mehmet Zeki SARIKAYA}, year = {2018}, volume = {6}, pages = {49 - 53}, doi = {}, title = {A Further Note on the Graph of Monogenic Semigroups}, key = {cite}, author = {Akgüneş, Nihat} }
APA Akgüneş, N . (2018). A Further Note on the Graph of Monogenic Semigroups. Konuralp Journal of Mathematics, 6 (1), 49-53. Retrieved from http://dergipark.gov.tr/konuralpjournalmath/issue/31478/407746
MLA Akgüneş, N . "A Further Note on the Graph of Monogenic Semigroups". Konuralp Journal of Mathematics 6 (2018): 49-53 <http://dergipark.gov.tr/konuralpjournalmath/issue/31478/407746>
Chicago Akgüneş, N . "A Further Note on the Graph of Monogenic Semigroups". Konuralp Journal of Mathematics 6 (2018): 49-53
RIS TY - JOUR T1 - A Further Note on the Graph of Monogenic Semigroups AU - Nihat Akgüneş Y1 - 2018 PY - 2018 N1 - DO - T2 - Konuralp Journal of Mathematics JF - Journal JO - JOR SP - 49 EP - 53 VL - 6 IS - 1 SN - -2147-625X M3 - UR - Y2 - 2018 ER -
EndNote %0 Konuralp Journal of Mathematics A Further Note on the Graph of Monogenic Semigroups %A Nihat Akgüneş %T A Further Note on the Graph of Monogenic Semigroups %D 2018 %J Konuralp Journal of Mathematics %P -2147-625X %V 6 %N 1 %R %U
ISNAD Akgüneş, Nihat . "A Further Note on the Graph of Monogenic Semigroups". Konuralp Journal of Mathematics 6 / 1 (Nisan 2018): 49-53.