Yıl 2018, Cilt 6, Sayı 1, Sayfalar 84 - 91 2018-04-15

Weighted Steffensen Type Inequalities Involving Convex Functions

Josip Pecaric [1] , Ksenija Smoljak Kalamir [2]

64 134

The object is to obtain weighted Steffensen type inequalities for the class of convex functions using inequalities for the class of functions that are "convex at point $c$''. Additionally, we give weaker conditions for obtained weighted Steffensen type inequalities. Moreover, by further generalizations of these inequalities we obtain refined and sharpened versions.

Steffensen's inequality, measure theory, generalizations, convex function
  • [1] S. N. Bernstein, Sur les fonctions absolument monotones, Acta Math. Vol:52 (1929), 1–66.
  • [2] J. Jaksetic, J. Pecaric, K. Smoljak Kalamir, Measure theoretic generalization of Peˇcari´c, Mercer and Wu-Srivastava results, Sarajevo J. Math. Vol:12, No.24 (2016), 33–49.
  • [3] Z. Liu, On extension of Steffensen’s inequality, J. Math. Anal. Approx. Theory Vol:2, No.2 (2007), 132–139.
  • [4] P. R. Mercer, Extensions of Steffensen’s inequality, J. Math. Anal. Appl. Vol:246, No.1 (2000), 325–329.
  • [5] J. Pecaric Notes on some general inequalities, Publ. Inst. Math. (Beograd), Nouvelle serie Vol:32, No.46 (1982), 131–135.
  • [6] J. Pecaric, A. Perusic, K. Smoljak, Mercer and Wu-Srivastava generalisations of Steffensen’s inequality, Appl. Math. Comput. Vol:219, No.21 (2013), 10548–10558.
  • [7] J. Pecaric, K. Smoljak Kalamir, Generalized Steffensen type inequalities involving convex functions, J. Funct. Spaces Vol:2014, Article ID 428030, 10 pages.
  • [8] J. Pecaric, K. Smoljak, Steffensen type inequalities involving convex functions, Math. Inequal. Appl. Vol:18, No.1 (2015), 363–378.
  • [9] J. Pecaric, K. Smoljak Kalamir, S. Varosanec, Steffensen’s and related inequalities (A comprehensive survey and recent advances), Monograhps in inequalities 7, Element, Zagreb, 2014.
  • [10] J. F. Steffensen, On certain inequalities between mean values and their application to actuarial problems, Skand. Aktuarietids. (1918), 82–97.
  • [11] S. H. Wu, H. M. Srivastava, Some improvements and generalizations of Steffensen’s integral inequality, Appl. Math. Comput. Vol:192 (2007), 422-428.
Birincil Dil en
Konular Mühendislik
Dergi Bölümü Articles
Yazarlar

Yazar: Josip Pecaric
Ülke: Croatia


Yazar: Ksenija Smoljak Kalamir (Sorumlu Yazar)
Ülke: Croatia


Bibtex @araştırma makalesi { konuralpjournalmath418141, journal = {Konuralp Journal of Mathematics}, issn = {}, eissn = {2147-625X}, address = {Mehmet Zeki SARIKAYA}, year = {2018}, volume = {6}, pages = {84 - 91}, doi = {}, title = {Weighted Steffensen Type Inequalities Involving Convex Functions}, key = {cite}, author = {Kalamir, Ksenija Smoljak and Pecaric, Josip} }
APA Pecaric, J , Kalamir, K . (2018). Weighted Steffensen Type Inequalities Involving Convex Functions. Konuralp Journal of Mathematics, 6 (1), 84-91. Retrieved from http://dergipark.gov.tr/konuralpjournalmath/issue/31478/418141
MLA Pecaric, J , Kalamir, K . "Weighted Steffensen Type Inequalities Involving Convex Functions". Konuralp Journal of Mathematics 6 (2018): 84-91 <http://dergipark.gov.tr/konuralpjournalmath/issue/31478/418141>
Chicago Pecaric, J , Kalamir, K . "Weighted Steffensen Type Inequalities Involving Convex Functions". Konuralp Journal of Mathematics 6 (2018): 84-91
RIS TY - JOUR T1 - Weighted Steffensen Type Inequalities Involving Convex Functions AU - Josip Pecaric , Ksenija Smoljak Kalamir Y1 - 2018 PY - 2018 N1 - DO - T2 - Konuralp Journal of Mathematics JF - Journal JO - JOR SP - 84 EP - 91 VL - 6 IS - 1 SN - -2147-625X M3 - UR - Y2 - 2018 ER -
EndNote %0 Konuralp Journal of Mathematics Weighted Steffensen Type Inequalities Involving Convex Functions %A Josip Pecaric , Ksenija Smoljak Kalamir %T Weighted Steffensen Type Inequalities Involving Convex Functions %D 2018 %J Konuralp Journal of Mathematics %P -2147-625X %V 6 %N 1 %R %U
ISNAD Pecaric, Josip , Kalamir, Ksenija Smoljak . "Weighted Steffensen Type Inequalities Involving Convex Functions". Konuralp Journal of Mathematics 6 / 1 (Nisan 2018): 84-91.