Yıl 2018, Cilt 11, Sayı 1, Sayfalar 96 - 103 2018-03-01

Granzimlerin Apoptotik ve Non-Apoptotik Etkileri
Apoptotic and Non-Apoptotic Effects of Granzyme

Ercan KESKİN [1] , Durmuş HATİPOĞLU [2]

79 122

Granzimler (granül enzimler), değişime uğramış hücreler ve virüs enfeksiyonlarından memelileri korumak için hedef hücreler içerisine sitotoksik lenfositlerin granüllerinden salınan proteazlardır. Hedef hücre sitoplazmalarının içerisine salınan granzimler bu hücrelerin ölümünü gerçekleştirmek amacıyla bazı spesifik yolları harekete geçirirler. Hedef hücrenin ölümünün gerçekleştirilmesi bu proteazların esas fonksiyonları olarak değerlendirilse de elde edilen bulgular hücre ölümü dışında başka fonksiyonlara da sahip olduklarını göstermektedir. Granzimler, virusların konakçıda hayat sikluslarını devam ettirebilmeleri için kodladıkları proteinleri parçalamak suretiyle doğrudan antiviral aktivite de gösterebilmektedirler. Çeşitli yangısal süreçlerde dolaşımdaki granzimlerin seviyelerinin artması ve ekstraselüler substratların granzimlerce parçalanması bu proteazların kronik inflamatuar hastalıkların patogenezisi, tümör hücrelerinin rejeksiyonu ve viral enfeksiyonlarla ilgili ekstraselüler etkilere sahip olabileceğini de göstermektedir.
Granzymes (granule enzymes) are proteases that are released from the granules of cytotoxic lymphocytes into target cells to protect mammals from altered cells and virus infections. Granzymes released into the target cell cytoplasm activate some specific pathways to effect the death of these cells. Although the realization of death of the target cell is regarded as the main function of these proteases, the findings show that they have other functions besides cell death. Granzymes can display antiviral activity directly by breaking down the proteins they encode so that the virus can survive life cycles in the host. The increased levels of circulating granzymes and disintegration of extracellular substrates into granules in various inflammatory processes indicate that these proteases may have extracellular effects on pathogenesis of chronic inflammatory diseases, rejection of tumor cells and viral infections.
  • Adrain C, Murphy BM, Martin SJ. Molecular ordering of the caspase activation cascade initiated by the cytotoxic T lymphocyte/natural killer (CTL/NK) protease granzyme B. 2005; Journal of Biological Chemistry, 280, 6, 4663-4673.
  • Andrade F, Bull HG, Thornberry NA, Ketner GW, Casciola-Rosen LA, Rosen A. Adenovirus L4-100K assembly protein is a granzyme B substrate that potently inhibits granzyme B-mediated cell death. 2001; Immunity, 14, 6, 751-761.
  • Andrade F, Casciola-Rosen LA, Rosen A. Granzyme B-induced cell death. 2004; Acta haematologica, 111, 1-2, 28-41.
  • Andrade F, Casciola-Rosen LA, Rosen A. A novel domain in adenovirus L4-100K is required for stable binding and efficient inhibition of human granzyme B: possible interaction with a species-specific exosite. 2003; Molecular and cellular biology, 23, 17, 6315-6326.
  • Andrade F, Fellows E, Jenne DE, Rosen A, Young C. Granzyme H destroys the function of critical adenoviral proteins required for viral DNA replication and granzyme B inhibition. 2007; The EMBO Journal, 26, 8, 2148-2157.
  • Bade B, Boettcher HE, Lohrmann J, Hink-Schauer C, Bratke K, Jenne DE, Virchow Jr JC, Luttmann W. Differential expression of the granzymes A, K and M and perforin in human peripheral blood lymphocytes. 2005; International immunology, 17, 11, 1419-1428.
  • Beresford PJ, Xia Z, Greenberg AH, Lieberman J. Granzyme A loading induces rapid cytolysis and a novel form of DNA damage independently of caspase activation. 1999; Immunity, 10, 5, 585-595.
  • Boya P, Pauleau A-L, Poncet D, Gonzalez-Polo R-A, Zamzami N, Kroemer G. Viral proteins targeting mitochondria: controlling cell death. 2004; Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1659, 2, 178-189.
  • Brunner G, Simon MM, Kramer MD. Activation of pro-urokinase by the human T cell-associated serine proteinase HuTSP-1. 1990; FEBS letters, 260, 1, 141-144.
  • Buzza MS, Bird PI. Extracellular granzymes: current perspectives. 2006; Biological chemistry, 387, 7, 827-837.
  • Buzza MS, Zamurs L, Sun J, Bird CH, Smith AI, Trapani JA, Froelich CJ, Nice EC, Bird PI. Extracellular matrix remodeling by human granzyme B via cleavage of vitronectin, fibronectin, and laminin. 2005; Journal of Biological Chemistry, 280, 25, 23549-23558.
  • Casciola-Rosen L, Andrade F, Ulanet D, Wong WB, Rosen A. Cleavage by granzyme B is strongly predictive of autoantigen status. 1999; Journal of Experimental Medicine, 190, 6, 815-826.
  • Casciola-Rosen L, Garcia-Calvo M, Bull HG, Becker JW, Hines T, Thornberry NA, Rosen A. Mouse and human granzyme B have distinct tetrapeptide specificities and abilities to recruit the bid pathway. 2007; Journal of Biological Chemistry, 282, 7, 4545-4552.
  • Chowdhury D, Lieberman J. Death by a thousand cuts: granzyme pathways of programmed cell death. 2008; Annual review of immunology, 26, 389.
  • Darmon AJ, Ley TJ, Nicholson DW, Bleackley RC. Cleavage of CPP32 by granzyme B represents a critical role for granzyme B in the induction of target cell DNA fragmentation. 1996; Journal of Biological Chemistry, 271, 36, 21709-21712.
  • Darmon AJ, Nicholson DW, Bleackley RC. Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. 1995; Nature, 377, 6548, 446-448.
  • Fellows E, Gil-Parrado S, Jenne DE, Kurschus FC. Natural killer cell–derived human granzyme H induces an alternative, caspase-independent cell-death program. 2007; Blood, 110, 2, 544-552.
  • Froelich CJ, Zhang X, Turbov J, Hudig D, Winkler U, Hanna WL. Human granzyme B degrades aggrecan proteoglycan in matrix synthesized by chondrocytes. 1993; The journal of immunology, 151, 12, 7161-7171.
  • Hernandez-Pigeon H, Jean C, Charruyer A, Haure M-J, Baudouin C, Charveron M, Quillet-Mary A, Laurent G. UVA Induces Granzyme B in Human Keratinocytes through MIF IMPLICATION IN EXTRACELLULAR MATRIX REMODELING. 2007; Journal of Biological Chemistry, 282, 11, 8157-8164.
  • Horiuchi K, Saito S, Sasaki R, Tomatsu T, Toyama Y. Expression of granzyme B in human articular chondrocytes. 2003; The Journal of rheumatology, 30, 8, 1799-1810.
  • Hostetter DR, Loeb CR, Chu F, Craik CS. Hip is a pro-survival substrate of granzyme B. 2007; Journal of Biological Chemistry, 282, 38, 27865-27874.
  • Hou Q, Zhao T, Zhang H, Lu H, Zhang Q, Sun L, Fan Z. Granzyme H induces apoptosis of target tumor cells characterized by DNA fragmentation and Bid-dependent mitochondrial damage. 2008; Molecular immunology, 45, 4, 1044-1055.
  • Johnson H, Scorrano L, Korsmeyer SJ, Ley TJ. Cell death induced by granzyme C. 2003; Blood, 101, 8, 3093-3101.
  • Kaiserman D, Bird CH, Sun J, Matthews A, Ung K, Whisstock JC, Thompson PE, Trapani JA, Bird PI. The major human and mouse granzymes are structurally and functionally divergent. 2006; J Cell Biol, 175, 4, 619-630.
  • Kelly JM, Waterhouse NJ, Cretney E, Browne KA, Ellis S, Trapani JA, Smyth MJ. Granzyme M mediates a novel form of perforin-dependent cell death. 2004; Journal of Biological Chemistry, 279, 21, 22236-22242.
  • Korthals M, Safaian N, Kronenwett R, Maihöfer D, Schott M, Papewalis C, Blanco ED, Winter M, Czibere A, Haas R. Monocyte derived dendritic cells generated by IFN-α acquire mature dendritic and natural killer cell properties as shown by gene expression analysis. 2007; Journal of translational medicine, 5, 1, 46.
  • Loeb CR, Harris JL, Craik CS. Granzyme B proteolyzes receptors important to proliferation and survival, tipping the balance toward apoptosis. 2006; Journal of Biological Chemistry, 281, 38, 28326-28335.
  • Lord SJ, Rajotte RV, Korbutt GS, Bleackley RC. Granzyme B: a natural born killer. 2003; Immunological reviews, 193, 1, 31-38.
  • Lu H, Hou Q, Zhao T, Zhang H, Zhang Q, Wu L, Fan Z. Granzyme M directly cleaves inhibitor of caspase-activated DNase (CAD) to unleash CAD leading to DNA fragmentation. 2006; The Journal of Immunology, 177, 2, 1171-1178.
  • MacDonald G, Shi L, Velde CV, Lieberman J, Greenberg AH. Mitochondria-dependent and-independent regulation of granzyme B–induced apoptosis. 1999; The Journal of experimental medicine, 189, 1, 131-144.
  • Martinvalet D, Zhu P, Lieberman J. Granzyme A induces caspase-independent mitochondrial damage, a required first step for apoptosis. 2005; Immunity, 22, 3, 355-370.
  • Mulligan‐Kehoe MJ, Drinane MC, Mollmark J, Casciola‐Rosen L, Hummers LK, Hall A, Rosen A, Wigley FM, Simons M. Antiangiogenic plasma activity in patients with systemic sclerosis. 2007; Arthritis & Rheumatology, 56, 10, 3448-3458.
  • Pasternack M, Bleier KJ, McInerney TN. Granzyme A binding to target cell proteins. Granzyme A binds to and cleaves nucleolin in vitro. 1991; Journal of Biological Chemistry, 266, 22, 14703-14708.
  • Romero V, Andrade F. Non‐apoptotic functions of granzymes. 2008; HLA, 71, 5, 409-416.
  • Ronday H, Van Der Laan W, Tak P, de Roos J, Bank R, TeKoppele J, Froelich C, Hack C, Hogendoorn P, Breedveld F. Human granzyme B mediates cartilage proteoglycan degradation and is expressed at the invasive front of the synovium in rheumatoid arthritis. 2001; Rheumatology, 40, 1, 55-61.
  • Sayers T, Wiltrout T, Sowder R, Munger W, Smyth M, Henderson L. Purification of a factor from the granules of a rat natural killer cell line (RNK) that reduces tumor cell growth and changes tumor morphology. Molecular identity with a granule serine protease (RNKP-1). 1992; The Journal of Immunology, 148, 1, 292-300.
  • Sayers TJ, Brooks AD, Ward JM, Hoshino T, Bere WE, Wiegand GW, Kelley JM, Smyth MJ. The restricted expression of granzyme M in human lymphocytes. 2001;The Journal of Immunology, 166, 2, 765-771.
  • Sayers TJ, Wiltrout T, Sowder R, Munger W, Smyth M, Henderson L. Purification of a factor from the granules of a rat natural killer cell line (RNK) that reduces tumor cell growth and changes tumor morphology. Molecular identity with a granule serine protease (RNKP-1). 1992; The Journal of Immunology, 148, 1, 292-300.
  • Sedelies KA, Sayers TJ, Edwards KM, Chen W, Pellicci DG, Godfrey DI, Trapani JA. Discordant regulation of granzyme H and granzyme B expression in human lymphocytes. 2004; Journal of Biological Chemistry, 279, 25, 26581-26587.
  • Shresta S, Graubert TA, Thomas DA, Raptis SZ, Ley TJ. Granzyme A initiates an alternative pathway for granule-mediated apoptosis. 1999; Immunity, 10, 5, 595-605.
  • Simon M, Prester M, Nerz G, Kramer M, Fruth U. Release of biologically active fragments from human plasma-fibronectin by murine T cell-specific proteinase 1 (TSP-1). 1988; Biological chemistry Hoppe-Seyler, 369, 107-112.
  • Strik MC, de Koning PJ, Kleijmeer MJ, Bladergroen BA, Wolbink AM, Griffith JM, Wouters D, Fukuoka Y, Schwartz LB, Hack CE. Human mast cells produce and release the cytotoxic lymphocyte associated protease granzyme B upon activation. 2007; Molecular immunology, 44, 14, 3462-3472.
  • Suidan HS, Clemetson KJ, Brown-Luedi M, Niclou SP, Clemetson JM, Tschopp J, Monard D. The serine protease granzyme A does not induce platelet aggregation but inhibits responses triggered by thrombin. 1996; Biochemical Journal, 315, 3, 939-945.
  • Trapani JA, Sutton VR. Granzyme B: pro-apoptotic, antiviral and antitumor functions. 2003; Current opinion in immunology, 15, 5, 533-543.
  • Tschopp CM, Spiegl N, Didichenko S, Lutmann W, Julius P, Virchow JC, Hack CE, Dahinden CA. Granzyme B, a novel mediator of allergic inflammation: its induction and release in blood basophils and human asthma. 2006; Blood, 108, 7, 2290-2299.
  • Zhao T, Zhang H, Guo Y, Fan Z. Granzyme K directly processes bid to release cytochrome c and endonuclease G leading to mitochondria-dependent cell death. 2007; Journal of Biological Chemistry, 282, 16, 12104-12111.
  • Zhu P, Zhang D, Chowdhury D, Martinvalet D, Keefe D, Shi L, Lieberman J. Granzyme A, which causes single‐stranded DNA damage, targets the double‐strand break repair protein Ku70. 2006; EMBO reports, 7, 4, 431-437.
Birincil Dil tr
Konular Fen
Dergi Bölümü DERLEME
Yazarlar

Yazar: Ercan KESKİN

Yazar: Durmuş HATİPOĞLU (Sorumlu Yazar)

Bibtex @derleme { kvj374649, journal = {Kocatepe Veteriner Dergisi}, issn = {1308-1594}, eissn = {2147-6853}, address = {Afyon Kocatepe Üniversitesi}, year = {2018}, volume = {11}, pages = {96 - 103}, doi = {}, title = {Granzimlerin Apoptotik ve Non-Apoptotik Etkileri}, key = {cite}, author = {KESKİN, Ercan and HATİPOĞLU, Durmuş} }
APA KESKİN, E , HATİPOĞLU, D . (2018). Granzimlerin Apoptotik ve Non-Apoptotik Etkileri. Kocatepe Veteriner Dergisi, 11 (1), 96-103. Retrieved from http://dergipark.gov.tr/kvj/issue/33193/374649
MLA KESKİN, E , HATİPOĞLU, D . "Granzimlerin Apoptotik ve Non-Apoptotik Etkileri". Kocatepe Veteriner Dergisi 11 (2018): 96-103 <http://dergipark.gov.tr/kvj/issue/33193/374649>
Chicago KESKİN, E , HATİPOĞLU, D . "Granzimlerin Apoptotik ve Non-Apoptotik Etkileri". Kocatepe Veteriner Dergisi 11 (2018): 96-103
RIS TY - JOUR T1 - Granzimlerin Apoptotik ve Non-Apoptotik Etkileri AU - Ercan KESKİN , Durmuş HATİPOĞLU Y1 - 2018 PY - 2018 N1 - DO - T2 - Kocatepe Veteriner Dergisi JF - Journal JO - JOR SP - 96 EP - 103 VL - 11 IS - 1 SN - 1308-1594-2147-6853 M3 - UR - Y2 - 2017 ER -
EndNote %0 Kocatepe Veteriner Dergisi Granzimlerin Apoptotik ve Non-Apoptotik Etkileri %A Ercan KESKİN , Durmuş HATİPOĞLU %T Granzimlerin Apoptotik ve Non-Apoptotik Etkileri %D 2018 %J Kocatepe Veteriner Dergisi %P 1308-1594-2147-6853 %V 11 %N 1 %R %U
ISNAD KESKİN, Ercan , HATİPOĞLU, Durmuş . "Granzimlerin Apoptotik ve Non-Apoptotik Etkileri". Kocatepe Veteriner Dergisi 11 / 1 (Mart 2018): 96-103.