Year 2017, Volume 13, Issue 2, Pages 787 - 802 2017-09-07

4., 5., 6., 7. ve 8. SINIF ÖĞRENCİLERİNİN STEM (FeTeMM) TUTUMLARININ BAZI DEĞIŞKENLER AÇISINDAN İNCELENMESİ
., 5., 6., 7. ve 8. SINIF ÖĞRENCİLERİNİN STEM (FeTeMM) TUTUMLARININ BAZI DEĞIŞKENLER AÇISINDAN İNCELENMESİ

Ganime AYDIN [1] , Mehpare Saka [2] , Selcen Guzey [3]

1732 2505

Bu araştırmanın amacı, 4 - 8. sınıf öğrencilerine yönelik fen, teknoloji, mühendislik, matematik (STEM= FeTeMM) tutum ölçeğinin Türkçe ’ye uyarlanması ve bu öğrencilerin STEM tutum düzeylerinin bazı demografik verilere göre farklılık gösterip göstermediği tespit edilmeye çalışılmıştır. Tarama modelinde olan çalışma, İstanbul, Edirne, Denizli, Antalya ve Kahramanmaraş illerinde 4. -5.- 6.- 7. ve 8. sınıf düzeyinden 964 öğrenciyle gerçekleştirilmiştir. Çalışmada veri toplama aracı olarak, Guzey, Harwell ve Moore (2014) tarafından geliştirilen ve bu araştırma kapsamında Türkçe ‘ye uyarlaması yapılan 28 maddeden oluşan STEM tutum ölçeği kullanılmıştır. Veri analizlerinde Lisrel870 ve SPSS 17 programları kullanılarak, ölçek adaptasyonunda doğrulayıcı faktör analizi, farklılıkların olup olmadığını tespit etmek için Mann Whitney U-Testi (Mann-Whitney U-Test for Independent Samples) ve Kruskal Wallis H-Testi (Kruskal Wallis H-Tests for independent samples) testleri kullanılmıştır. Elde edilen sonuçlara göre örneklem grubu öğrencilerinin STEM tutum düzeylerinin katılıyorum seviyesinde olduğu belirlenmiştir. Ayrıca, öğrencilerin STEM tutum düzeylerinin cinsiyet, özel veya devlet okulu, anne -baba eğitim durumu değişkenleri açısından farklılık göstermediği bulunmuştur. Ancak, sınıf düzeyi (χ2 (sd=4, n=964) = 54.49, p<.05), yaşadıkları şehir (χ2 (sd=3, n=964) = 13.10, p<.05) ve meslek tercihleri (χ2 (sd=7, n=964) = 7.77, p>.05) STEM tutum düzeylerinde anlamlı farklılığa neden olmuştur. Çalışma ölçeğin alanda kullanımı, ilk ve ortaokul öğrencilerimizin STEM uygulamalarına hazır bulunuşluk düzeyini göstermesi açısından önemlidir.

Bu araştırmanın amacı, Türkçe uyarlama çalışması yapılan STEM (fen, matematik, mühendislik, teknoloji) tutum ölçeği kullanılarak, 4., 5., 6., 7. ve 8. sınıf öğrencilerinin STEM tutum düzeylerini ve bazı demografik bilgilerine göre STEM tutumlarının farklılık gösterip göstermediğini tespit etmektir. Tarama modelinde olan çalışma, İstanbul, Edirne, Denizli, Antalya ve Kahramanmaraş illerinde  4., 5., 6., 7. ve 8. sınıf düzeyinden  964 öğrenciyle gerçekleştirilmiştir. Çalışmada veri toplama aracı olarak, Guzey, Harwell ve Moore (2014) tarafından geliştirilen ve bu araştırma kapsamında Türkçe’ye uyarlaması yapılan STEM tutum ölçeği kullanılmıştır. Veri analizlerinde Lisrel870 ve SPSS 17 programları kullanılarak, ölçek adaptasyonunda doğrulayıcı faktör analizi, farklılıkların olup olmadığını tespit etmek için Mann Whitney U-Testi (Mann-Whitney U-Test for Independent Samples) ve Kruskal Wallis H-Testi (Kruskal Wallis  H-Tests for independent samples) testleri kullanılmıştır. Elde edilen sonuçlara göre örneklem grubu öğrencilerinin STEM tutum düzeylerinin, ölçeğin tamamında ve alt boyutlarında katılıyorum seviyesinde olduğu belirlenmiştir. Ayrıca, öğrencilerin STEM tutum düzeylerinin cinsiyet, özel veya devlet okulu, anne -baba eğitim durumu değişkenleri açısından farklılık göstermediği bulunmuştur. Ancak, sınıf düzeyi (χ2 (sd=4, n=964) = 54.49, p<.05), yaşadıkları şehir (χ2 (sd=3, n=964) = 13.10, p<.05) ve meslek tercihleri (χ2 (sd=7, n=964) = 7.77, p>.05) STEM tutum düzeylerinde anlamlı farklılığa neden olmuştur. Çalışma ölçeğin alanda kullanımı, ilk ve ortaokul öğrencilerimizin STEM uygulamalarına hazır bulunuşluk düzeyini göstermesi açısından önemlidir. 

  • Akgündüz, D., Ertepınar, H., Ger, A. M. Kaplan Sayı, A., & Türk, Z.(2015). STEM eğitimi çalıştay raporu: Türkiye STEM eğitimi üzerine kapsamlı bir değerlendirme.[The report of STEM education workshop: An assessment on STEM education in Turkey]. http://www.aydin.edu.tr/belgeler/IAU-STEM-Egitimi-Turkiye-Raporu-2015.pdf adresinden alınmıştır.
  • Baenninger, M., & Newcombe, N. (1989). The role of experience in spatial test performance: A meta-analysis. Sex Roles, 20(6), 327-344.
  • Bagiati, A., & Evangelou, D. (2009). An examination of web-based P-12 engineering curricula: Issues of pedagogical and engineering content fidelity. Presented at the 2009 Research in Engineering Education Symposium, July 20-23, Palm Cove, Queensland, Australia.
  • Beane, J. (1995). Curriculum integration and the disciplines of knowledge. Phi Delta Kappan, 76, 616-622
  • Betz, D. E., & Sekaquaptewa, D. (2012). My fair physicist? Feminine math and science role models demotivate young girls. Social psychological and personality science, 3(6), 738-746.
  • Bagiati, A., & Evangelou, D. (2015). Engineering curriculum in the preschool classroom:the teacher’s experience, European Early Childhood Education Research Journal, 23(1), 112-128. doi: 10.1080/1350293X.2014.991099
  • Brown, P., & Borrego, M. (2013). Engineering Efforts and Opportunities in the National Science Foundation’s Math and Science Partnerships (MSP) Program. Journal of Technology Education. 24(2).
  • Burrows, S., Ginn, D.S., Love, N., & Williams T.L. (1989). A strategy for curriculum integration of information skills instruction, Bulletin of the Medical Library Association, 77(3), 245-251.
  • Büyüközturk, S., Kılıç, Cakmak, E., Akgün, O. E., Karadeniz, S., & Demirel, F. (2009). Bilimsel arastirma yöntemleri. Ankara: Pegem Akademi.
  • Capraro, R.M., & Slough, S.W. (2008). Project-based learning: An integrated science, technology, engineering, and mathematics (STEM) approach. Rotterdam, The Netherlands: Sense Publishers.
  • Chen, X. (2009). Students Who Study Science, Technology, Engineering, and Mathematics (STEM) in Postsecondary Education. Stats in Brief. NCES 2009-161. National Center for Education Statistics.
  • Cheryan, S., Plaut, V. C., Davies, P. G., & Steele, C. M. (2009). Ambient belonging: How stereotypical cues impact gender participation in computer science. Journal of Personality and Social Psychology, 97, 1045– 1060. doi: 10.1037/a0016239
  • Childress, V.W. (1996). Does integration technology, science, and mathematics improve technological problem solving: A quasi-experiment. Journal of Technology Education, 8(1), 16-26.
  • Corbett, K. S., & Coriell, J. M. (2014 June), STEM explore, discover, apply – A middle school elective (curriculum exchange) Paper presented at 2014 ASEE Annual Conference, Indianapolis, Indiana. https://peer.asee.org/23034 adresinden 24.10.2016 tarihinde erişilmiştir.
  • Else-Quest, N. M., Mineo, C. C., & Higgins, A. (2013). Math and science attitudes and achievement at the intersection of gender and ethnicity. Psychology of Women Quarterly, 37(3), 293-309.
  • Feldman, R.S. (1993). Understanding psychology. McGraw-Hill Inc, New York.
  • Freedman, J. L., Sears, D. O., & Carlsmith, J. M. (1989). Sosyal psikoloji (çev. A. Dönmez). Ankara: Ara Yayınları.
  • Furner, J., & Kumar, D. (2007). The mathematics and science integration argument: A stand for teacher education. Eurasia Journal of Mathematics, Science & Technology, 3(3), 185-189.
  • Genç, G., Kaya, A., & Genç, M. (2007). İnönü Üniversitesi Tıp Fakültesi öğrencilerinin meslek seçimini etkiyen faktörler. .İnönü Üniversitesi Eğitim Fakültesi Dergisi, 8(14), 49–63.
  • Gottfried, A. E. (1990). Academic intrinsic motivation in young elementary school children. Journal of Educational Psychology, 82, 525-538
  • Guzey, S. S., Tank, K., Wang, H. H., Roehrig, G., & Moore, T. (2014). A high‐quality professional development for teachers of grades 3–6 for implementing engineering into classrooms. School science and mathematics, 114(3), 139-149. doi: 10.1111/ssm.12061
  • Guzey, S. S., Harwell, M., & Moore, T. (2014). Development of an instrument to assess attitudes toward science, technology, engineering, and mathematics (STEM). School Science and Mathematics, 114(6), 271-279. doi: 10.1111/ssm.12077
  • Gülhan, F., & Şahin, F. (2016). Fen-teknoloji-mühendislik-matematik entegrasyonunun (STEM) 5. sınıf öğrencilerinin bu alanlarla ilgili algı ve tutumlarına etkisi. International Journal of Human Sciences, 602-620. doi:10.14687/ijhs.v13i1.3447
  • Honey, M., Pearson, G., & Schweingruber, H. (Eds). National Academy of Engineering and National Research Council (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. Washington D.C. : The National Academies Press.
  • Jacobs, H.H. (1989). Interdisciplinary curriculum: Design and implementation. Alexandria, VA: Association for Supervision and Curriculum Development.
  • Kagıtcıbası, Ç. (1985). İnsan ve insanlar. İstanbul: Sermet Matbaası.
  • Karasar, N. (1995). Bilimsel Araştırma Yöntemi: Kavramlar, İlkeler, Teknikler. Ankara: 3A Araştırma, Eğitim, Danışmanlık Ltd. Şti.,.
  • Katehi, L., Pearson, G., & Feder, M. (Eds.) (2009). National Academy of Engineering and National Research Council Report: Engineering in K-12 education. Washington, D.C.: The National Academies Press.
  • Kaufman, D., Moss, D., & Osborn, T. (2003). Beyond the boundaries: A trans-disciplinary approach to learning and teaching. Praeger, Westport, Connecticut.
  • Lamb, R., Akmal, T., & Petrie, K. (2015). Development of a cognition‐priming model describing learning in a STEM classroom. Journal of Research in Science Teaching, 52(3), 410-437. doi: 10.1002/tea.21200.
  • Langdon, D., McKittrick, G., Beede, D., Khan, B., & Dom, M. (2011). STEM: Good Jobs Now and for the Future, U.S. Department of Commerce Economics and Statistics Administration, 3(11), 2.
  • Lipsett, L. (1962). Social factors in vocational development. The Personnel and Guidance Journal, 40(5), 432-437.
  • Little, R., Poth, R., Gilbert, R., & Barger, M. (2005, June), Adapting the engineering design process for elementary education applications. Paper presented at 2005 Annual Conference, Portland, Oregon. Retrieved from https://peer.asee.org/15533 on 24.10.2016.
  • Mahoney, M. P. (2009). Student attitude toward STEM: Development of an instrument for high school STEM-based programs (Doctoral dissertation, The Ohio State University).
  • Mann, E. L., Mann, R. L., Strutz, M. L., Duncan, D., & Yoon, S. Y. (2011). Integrating engineering into K-6 curriculum developing talent in the STEM disciplines. Journal of Advanced Academics, 22(4), 639-658.
  • Maltese, A. V., & Tai, R. H. (2011). Pipeline persistence: Examining the association of educational experiences with earned degrees in STEM among US students. Science Education, 95(5), 877-907.
  • Miaoulis, I. N. (2008). Engineering the K-12 curriculum for technological innovation.. Retrieved from http://legacy.mos.org/NCTL/docs/MOS_NCTL_White_Paper.pdf.
  • Moore T. ve Richards L. G. (2012). P-12 engineering education research and practice. Introduction to a Special Issue of Advances in Engineering Education, 3 (2), 1-9.
  • Morrison, J. (2006). TIES STEM education monograph series, attributes of STEM education. Baltimore, MD: TIES.
  • Murphy, M. C., Steele, C., & Gross, J. (2007). Signaling threat: How situational cues affect women in math, science, and engineering settings. Psychological Science, 18, 879 – 885. doi: 10.1111/j.1467- 9280.2007.01995.
  • National Academy of Engineering (NAE) and National Research Council (NRC) (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. Washington, DC: The National Academies Press.
  • Pehlivan, K. B. (2008). Sınıf öğretmeni adaylarının sosyo-kültürel özellikleri ve öğretmenlik mesleğine yönelik tutumları üzerine bir çalışma. Mersin Üniversitesi Eğitim Fakültesi Dergisi, 4(2).
  • Richardson, D., & Houston, C. W. (2006). A study of the impact of an informal science education program on middle school students’ science knowledge, science attitude, STEM high school and college course selections, and career decisions. Retrieved from https://www.lib.utexas.edu/etd/d/2006/ricksm81757/ricksm81757.pdf . on 5 December 2016.
  • Rogers, C., & Portsmore, M. (2004). Bringing engineering to elementary school. Journal of STEM Education, 5 (3), 17-28.
  • Sarıkaya, T., & Khorshid, L. (2009). Üniversite öğrencilerinin meslek seçimini etkileyen etmenlerin incelenmesi: Üniversite öğrencilerinin meslek seçimi. Türk Eğitim Bilimleri Dergisi, 7(2), 393-423.
  • Stinson, K., Harkness, S., Meyer, H., & Stallworth, J. (2009). Mathematics and science integration: models and characterizations. School Science and Mathematics, 109(3), 153-161.
  • Stout, J. G., Dasgupta, N., Hunsinger, M., & McManus, M. A. (2011). STEMing the tide: using in group experts to inoculate women's self-concept in science, technology, engineering, and mathematics (STEM). Journal of personality and social psychology, 100(2), 255.
  • Sullivan, F. R. (2008). Robotics and science literacy: Thinking skills, science process skills and systems understanding. Journal of Research in Science Teaching, 45(3), 373–394.
  • Sweller, J. (1989). Cognitive technology: Some procedures for facilitating learning and problem solving in mathematics and science. Journal of Education Psychology, 81(4), 457-466.
  • Sahin, A., Ayar, M. C., & Adıgüzel, T. (2014). Fen, teknoloji, mühendislik ve matematik içerikli okul sonrası etkinlikler ve öğrenciler üzerindeki etkileri. Kuram ve Uygulamada Eğitim Bilimleri. 14 (1), 1-26.
  • Tezbaşaran, A. A. (1996) Likert tipi ölçek geliştirme klavuzu. Türk Psikologlar Derneği Yayınları.
  • TIMSS (Uluslararası Eğitim Başarılarını Değerlendirme Kuruluşu [International Association for the Evaluation of Educational Achievement] ). (2016). TIMSS 2015 And TIMSS Advanced 2015 Internatıonal Results. Retrieved from http://timssandpirls.bc.edu/
  • Tseng, K. H., Chang , C. C, Lou, Ş. J., & Chen W. P.(2013). Attitudes towards science, technology, engineering and mathematics (STEM) in a project-based learning (PjBL) environment. International Journal Technology Design Education, 23, 87–102.
  • Tunç, Ç. G., Akansel, N., & Özdemir, A. (2010). Hemşirelik ve sağlık memurluğu öğrencilerinin meslek seçimlerini etkileyen faktörler. Maltepe Üniversitesi Hemşirelik Bilim ve Sanatı Dergisi, 3(1), 24-31.
  • Unfried, A., Faber, M., Stanhope, D. S., & Wiebe, E. (2015). The development and validation of a measure of student attitudes toward science, technology, engineering, and math (S-STEM). Journal of Psychoeducational Assessment, doi: 0734282915571160.
  • Wai, J., Lubinski, D., & Benbow, C.P. (2010). Accomplishment in science, technology, engineering, and mathematics (STEM) and its relation to STEM Educational Dose: a 25-year longitudinal study. Journal of Educational Psychology, 102(4), 860-871.
  • Wyss, V. L., Heulskamp, D., & Siebert, C. J. (2012). Increasing middle school student interest in STEM careers with videos of scientists. International Journal of Environmental Science Education, 7 (4), 501-522.
  • Yamak, H., Bulut, N., & Dündar, S. (2014). 5. sınıf öğrencilerinin bilimsel süreç becerileri ile fene karşı tutumlarına FeTeMM etkinliklerinin etkisi. Gazi Üniversitesi Eğitim Fakültesi Dergisi.34(2): 249-265.
  • Yenilmez, K., Balbağ, M. Z. (2016). Fen Bilgisi ve İlköğretim Matematik Öğretmeni Adaylarının Stem’e Yönelik Tutumları. Journal of Research in Education and Teaching. 5(4): 301- 307.
  • Yıldırım, B. (2013). STEM Eğitimi ve Türkiye. (08-09 Kasım) IV. Ulusal İlköğretim Bölümleri Öğrenci Kongresi, Nevşehir.
Subjects Education, Scientific Disciplines
Journal Section Makaleler
Authors

Author: Ganime AYDIN
Institution: Istanbul Aydin Univeristy
Country: Turkey


Author: Mehpare Saka
Institution: TRAKYA ÜNİVERSİTESİ

Author: Selcen Guzey
Institution: Purdue University

Bibtex @research article { mersinefd290319, journal = {Mersin Üniversitesi Eğitim Fakültesi Dergisi}, issn = {}, eissn = {1306-7850}, address = {Mersin University}, year = {2017}, volume = {13}, pages = {787 - 802}, doi = {10.17860/mersinefd.290319}, title = {4., 5., 6., 7. ve 8. SINIF ÖĞRENCİLERİNİN STEM (FeTeMM) TUTUMLARININ BAZI DEĞIŞKENLER AÇISINDAN İNCELENMESİ}, key = {cite}, author = {AYDIN, Ganime and Saka, Mehpare and Guzey, Selcen} }
APA AYDIN, G , Saka, M , Guzey, S . (2017). 4., 5., 6., 7. ve 8. SINIF ÖĞRENCİLERİNİN STEM (FeTeMM) TUTUMLARININ BAZI DEĞIŞKENLER AÇISINDAN İNCELENMESİ. Mersin Üniversitesi Eğitim Fakültesi Dergisi, 13 (2), 787-802. DOI: 10.17860/mersinefd.290319
MLA AYDIN, G , Saka, M , Guzey, S . "4., 5., 6., 7. ve 8. SINIF ÖĞRENCİLERİNİN STEM (FeTeMM) TUTUMLARININ BAZI DEĞIŞKENLER AÇISINDAN İNCELENMESİ". Mersin Üniversitesi Eğitim Fakültesi Dergisi 13 (2017): 787-802 <http://dergipark.gov.tr/mersinefd/issue/28670/290319>
Chicago AYDIN, G , Saka, M , Guzey, S . "4., 5., 6., 7. ve 8. SINIF ÖĞRENCİLERİNİN STEM (FeTeMM) TUTUMLARININ BAZI DEĞIŞKENLER AÇISINDAN İNCELENMESİ". Mersin Üniversitesi Eğitim Fakültesi Dergisi 13 (2017): 787-802
RIS TY - JOUR T1 - 4., 5., 6., 7. ve 8. SINIF ÖĞRENCİLERİNİN STEM (FeTeMM) TUTUMLARININ BAZI DEĞIŞKENLER AÇISINDAN İNCELENMESİ AU - Ganime AYDIN , Mehpare Saka , Selcen Guzey Y1 - 2017 PY - 2017 N1 - doi: 10.17860/mersinefd.290319 DO - 10.17860/mersinefd.290319 T2 - Mersin Üniversitesi Eğitim Fakültesi Dergisi JF - Journal JO - JOR SP - 787 EP - 802 VL - 13 IS - 2 SN - -1306-7850 M3 - doi: 10.17860/mersinefd.290319 UR - https://doi.org/10.17860/mersinefd.290319 Y2 - 2017 ER -
EndNote %0 Mersin University Journal of the Faculty of Education 4., 5., 6., 7. ve 8. SINIF ÖĞRENCİLERİNİN STEM (FeTeMM) TUTUMLARININ BAZI DEĞIŞKENLER AÇISINDAN İNCELENMESİ %A Ganime AYDIN , Mehpare Saka , Selcen Guzey %T 4., 5., 6., 7. ve 8. SINIF ÖĞRENCİLERİNİN STEM (FeTeMM) TUTUMLARININ BAZI DEĞIŞKENLER AÇISINDAN İNCELENMESİ %D 2017 %J Mersin Üniversitesi Eğitim Fakültesi Dergisi %P -1306-7850 %V 13 %N 2 %R doi: 10.17860/mersinefd.290319 %U 10.17860/mersinefd.290319
ISNAD AYDIN, Ganime , Saka, Mehpare , Guzey, Selcen . "4., 5., 6., 7. ve 8. SINIF ÖĞRENCİLERİNİN STEM (FeTeMM) TUTUMLARININ BAZI DEĞIŞKENLER AÇISINDAN İNCELENMESİ". Mersin Üniversitesi Eğitim Fakültesi Dergisi 13 / 2 (September 2017): 787-802. https://doi.org/10.17860/mersinefd.290319