Yıl 2018, Cilt 6, Sayı 2, Sayfalar 143 - 163 2018-12-24
| | | |

## The concept of Hukuhara Derivative and Aumann Integrals for Intuitionistic fuzzy number valued functions

#### Ömer Akın [1] , Selami Bayeğ [2]

##### 16 41

In this paper we have frstly defned a metric in intuitionistic fuzzy environment and studied its properties. Then we have proved that the metric space of fuzzy number valued functions is complete under this metric. We have studied the concept of Aumann integration for intuitionistic fuzzy number valued functions in terms of α and β cuts. We have given the relation between Hukuhara derivative and Aumann integral for intuitionistic fuzzy valued functions by using the fundamental theorem of calculus.

Intuitionistic fuzzy sets, Intuitionistic fuzzy valued functions, Hukuhara diﬀerentiability, Aumann integral, Intuitionistic Hausdorff metric
• [1] Lotf A. Z., ”Fuzzy Sets,” Information and Control, 8, (1965), pp. 338-353.
• [2] Krassimir T. A., ”Intuitionistic Fuzzy Sets,” Fuzzy Sets and Systems, 20, 1, (1986), pp. 87–96.
• [3] Joseph A. G. ”L-Fuzzy Sets,” Journal of Mathematical Analysis and Applications, 18, 1,(1967), 145-174.
• [4] Jerry M. M. ”Advances in Type-2 Fuzzy Sets and Systems,” Information Sciences, 177, 1, (2007), pp. 84-110.
• [5] Krassimir T. A., Intuitionistic Fuzzy Sets: Theory and Applications, Physica, Heidelberg, 1999.
• [6] Laecio C. B., Rodney C. B, Pedro A. T., ”Fuzzy Modelling in Population Dynamics,” Ecol. Model, 128, (2000), pp. 27-33.
• [7] Deng-Feng L., ”Multiattribute Decision Making Models and Methods Using Intuitionistic Fuzzy Sets,” Journal of Computer and System Sciences, 70, 1 (2005), pp. 73-85.
• [8] Jun Y., ”Multicriteria Fuzzy Decision-Making Method Based on a Novel Accuracy Function under Interval-Valued Intuitionistic Fuzzy Environment,” Expert Systems with Applications, 36, 3, (2009), pp. 6899-6902.
• [9] Li D., Cheng C., ”New Similarity Measures of Intuitionistic Fuzzy Sets and Application to Pattern Recognitions,” Pattern Recognition Letters, 23, 1-3, (2002), pp. 221-225.
• [10] Supriya K. D., Ranjit B., Akhil R. R., ”An Application of Intuitionistic Fuzzy Sets in Medical Diagnosis,” Fuzzy Sets and Systems, 117, 2, (2001), pp. 209-213.
• [11] Athar K., ”Homeopathic Drug Selection Using Intuitionistic Fuzzy Sets,” Homeopathy, 98,1, (2009), pp. 35-39.
• [12] Ming-Hung S., Ching-Hsue C., Jing-Rong C., ”Using Intuitionistic Fuzzy Sets for Faulttree Analysis on Printed Circuit Board Assembly,” Microelectronics Reliability, 46, 12, (2006), pp. 2139-2148.
• [13] Laecio C. B., Rodney C. B, Pedro A. T., ”Fuzzy Modelling in Population Dynamics,” Ecol. Model, 128, (2000), pp. 27-33.
• [14] Oktay D., ”Statistical Fuzzy Approximation to Fuzzy Diﬀerentiable Functions by Fuzzy Linear Operators,” Hacettepe Journal of Mathematics and Statistics, 39, 4, (2010), pp. 497-514.
• [15] Omer A., ¨ Omer O., ”A Prey Predator Model with Fuzzy Initial Values,” Hacettepe Journal of Mathematics and Statistics, 41, 3, (2012), pp. 387-395.
• [16] Senol D., Lawrence. M. B., ”Intuitionistic Textures Revisited,” Hacettepe Journal of Mathematics and Statistics, 34, (2005), 115-130.
• [17] Jin Han P., ”Intuitionistic Fuzzy Metric Spaces”, Chaos, Solitons Fractals 22, 5, (2004), pp. 1039-1046.
• [18] Qian L., Zeshui X., ”Fundamental Properties of Intuitionistic Fuzzy Calculus,” Knowledge-Based Systems, 76, (2015), pp. 1-16.
• [19] M. Oberguggenberger, S. Pittschmann, ”Diﬀerential Equations with Fuzzy Parameters,” Math. Mod. Syst,, 5, (1999), 181-202.
• [20] Omer A., Tahir K., ¨ Omer O., Burhan T., ”An Algorithm for the Solution of Second Order ¨ Fuzzy Initial Value Problems,” Expert Systems with Applications, 40, (2013), 953-957.
• [21] Omer A., Tahir K., Selami B., Burhan T., ”Solving a Second Order Fuzzy Initial Value ¨ Problem Using the Heaviside Function,” Turk. J. Math. Comput. Sci., 4, (2016), 16-25.
• [22] Phil D., Peter E. K., Metric Spaces of Fuzzy Sets: Theory and Applications. World scientifc, 1994.
• [23] Masuo H., ”Integration des Applications Mesurables dont la Valeur est un Compact Convexe,” Funkcialaj Ekvacioj, 10, 3 (1967), pp. 205-223.
• [24] Madan L. P., Dan A. R., ”Diﬀerentials of Fuzzy Functions,” Journal of Mathematical Analysis and Applications, 91, 2, (1983), 552-558.
• [25] Osmo K., ”Fuzzy Diﬀerential Equations,” Fuzzy Sets and Systems, 24, 3, (1987), pp. 301-317.
• [26] Eyke H., ”An Approach to Modelling and Simulation of Uncertain Dynamical Systems,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 5, 02, (1997), pp. 117-137.
• [27] Michio S., ”Theory of Fuzzy Integrals and its Applications,” Ph.D. Dissertation, Tokyo Institute of Technology, 1974.
• [28] Dan R., Gregory A., ”The Fuzzy Integral,” Journal of Mathematical Analysis and Applications, 75, 2, (1980), pp. 562-570.
• [29] Didier D., Henri P., ”Towards Fuzzy Diﬀerential Calculus Part 1: Integration of Fuzzy Mappings.” Fuzzy Sets and Systems, 8, 1, (1982), 1-17.
• [30] Robert J. A., ”Integrals of Set-Valued Functions,” Journal of Mathematical Analysis and Applications, 12, 1, (1965), pp. 1-12.
• [31] Jan V. T., ”Convex Analysis: An Introductory Text,” John WileySons, Chichester, UK, 1948.
• [32] Carl P. S., Lawrence B., Mathematics for Economists, vol. 7, Norton, New York, 1994.
• [33] Omer A. and Selami B., ”Initial Value Problems in Intuitionistic Fuzzy Environment,” Proceedings of the the 5th International Fuzzy Systems Symposium, Ankara, Turkey, October 14-15, 2017.
• [34] Omer A., Selami B., ”Intuitionistic Fuzzy Initial Value Problems - An Application”, Hacettepe Journal of Mathematics and Statistics, (2017) Doi: 10.15672/HJMS.2018.598.
Birincil Dil en Mühendislik Araştırma Makalesi Yazar: Ömer Akın (Sorumlu Yazar)Kurum: Department of Mathematics, TOBB University of Economics and Technology, Ankara, Turkey Kyrgyz – Turkish Manas University, Faculty of Science, Department of Applied Mathematics and Informatics, Bishkek, KyrgyzstanÜlke: Turkey Yazar: Selami BayeğKurum: Department of Mathematics, TOBB University of Economics and Technology, Ankara, TurkeyÜlke: Turkey
 Bibtex @araştırma makalesi { mjen482514, journal = {Manas Journal of Engineering}, issn = {1694-7398}, eissn = {1694-7398}, address = {Kırgızistan Türkiye Manas Üniversitesi}, year = {2018}, volume = {6}, pages = {143 - 163}, doi = {}, title = {The concept of Hukuhara Derivative and Aumann Integrals for Intuitionistic fuzzy number valued functions}, key = {cite}, author = {Akın, Ömer and Bayeğ, Selami} } APA Akın, Ö , Bayeğ, S . (2018). The concept of Hukuhara Derivative and Aumann Integrals for Intuitionistic fuzzy number valued functions. Manas Journal of Engineering, 6 (2), 143-163. Retrieved from http://dergipark.gov.tr/mjen/issue/41506/482514 MLA Akın, Ö , Bayeğ, S . "The concept of Hukuhara Derivative and Aumann Integrals for Intuitionistic fuzzy number valued functions". Manas Journal of Engineering 6 (2018): 143-163 Chicago Akın, Ö , Bayeğ, S . "The concept of Hukuhara Derivative and Aumann Integrals for Intuitionistic fuzzy number valued functions". Manas Journal of Engineering 6 (2018): 143-163 RIS TY - JOUR T1 - The concept of Hukuhara Derivative and Aumann Integrals for Intuitionistic fuzzy number valued functions AU - Ömer Akın , Selami Bayeğ Y1 - 2018 PY - 2018 N1 - DO - T2 - Manas Journal of Engineering JF - Journal JO - JOR SP - 143 EP - 163 VL - 6 IS - 2 SN - 1694-7398-1694-7398 M3 - UR - Y2 - 2018 ER - EndNote %0 Manas Journal of Engineering The concept of Hukuhara Derivative and Aumann Integrals for Intuitionistic fuzzy number valued functions %A Ömer Akın , Selami Bayeğ %T The concept of Hukuhara Derivative and Aumann Integrals for Intuitionistic fuzzy number valued functions %D 2018 %J Manas Journal of Engineering %P 1694-7398-1694-7398 %V 6 %N 2 %R %U ISNAD Akın, Ömer , Bayeğ, Selami . "The concept of Hukuhara Derivative and Aumann Integrals for Intuitionistic fuzzy number valued functions". Manas Journal of Engineering 6 / 2 (Aralık 2018): 143-163.