Cilt 25, Sayı 1, Sayfalar 57 - 74

Solvıng The 0-1 Nonlınear Programmıng Models By Usıng The Modıfıed Subgradıent Algorıthm Based On Feasıble Values
Tam Sayılı Doğrusal Olmayan Matematiksel Modellerin Uygun Çözüm Temelli Genişletilmiş Subgradient Algoritması İle Çözülmesi

Tuğba SARAÇ [1]

95 292

A modified subgradient algorithm based on feasible values (F-MSG) has been proposed for solving nonlinear mathematical models in 2004 by Gasimov et.al.  It is an approach to solve dual problems constructed by sharp augmented Lagrangian function. It has some remarkable features. For example, it is convergent, and it guarantees zero duality gap for the problems such that its objective and constraint functions are all Lipschtz. In this study, a GAMS program has been developed for solving the nonlinear models by using FMSG. Success of the algorithm on solving the 0-1 nonlinear programming problems has been examined by using the quadratic knapsack, cell formation and dynamic layout problems.   

Uygun Çözüm Temelli Genişletilmiş Subgadient Algoritması (UÇT-GSA) doğrusal olmayan matematiksel modeller için, 2004 yılında Gasimov ve diğerleri tarafından önerilmiştir. Sivri, genişletilmiş Lagrange fonksiyonu ile kurulmuş ikil problemin çözümüne yönelik bir yaklaşımdır. Bu yöntemin önemli üstünlükleri, çözüm sürecinin yakınsak olması, sıfır ikil aralığın elde edilebilmesi ve sürekli problem üzerine herhangi bir dışbükeylik veya türevlenebilirlik şartı olmaması olarak sayılabilir. Bu çalışmada 01 tamsayılı doğrusal olmayan matematiksel modellerin UÇT-GSA ile çözülebilmeleri için bir GAMS kodu geliştirilmiştir ve algoritmanın 0-1 tamsayılı doğrusal olmayan problemlerin çözümündeki başarısı karesel sırt çantası, hücre oluşturma  ve dinamik yerleşim problemleri kullanılarak araştırılmıştır.

  • [1] R.T. Rockafellar, R.J.-B Wets, “Variational Analysis”, Springer, Berlin, 1998.
  • [2] R.N. Gasimov, “Augmented Lagrangian duality and nondifferantiable optimization methods in nonconvex programming”, Journal of Global Optimization, Vol.24, pp.187-203, 2002.
  • [3] R.N. Gasimov, A.M. Rubinov, O. Ustun, “The Modified Subgradient Algorithm Based on Feasible Dual Values and Solving the Quadratic Assignment Problems”, International Conference on Continuous Optimization (ICCOPT-I) August 2-4, Rensselaer Polytechnic Institute, Troy, New York, pp.31-32, 2004.
  • [4] M.S. Bazaraa, H.D. Sherali, C.M. Shetty, “Nonlinear Programming. Theory and Algorithms”, John Wiley & Sons, Inc., New Jersey, 2006.
  • [5] D.P. Bertsekas, “Nonlinear Programming”, Athena Scientific, Belmont, MA, 1995.
  • [6] T. Saraç, A. Sipahioğlu, “Karesel sırt çantası problemi için subgradient temelli bir çözüm yaklaşımı”, Yöneylem Araştırması ve Endüstri Mühendisliği 26. Ulusal Kongresi, 3-5 Temmuz, İzmit-Kocaeli, pp.202-205, 2006.
  • [7] R.N. Gasimov, O. Ustun, “Solving the quadratic assignment problem using F-MSG algorithm”, Journal of Industrial and Management Optimization, Vol.3, No.2, pp.173-191, 2007.
  • [8] H.L. Li, “An approximate method for local optima for nonlinear mixed integer programming problems”, Computers and Operations Research, Vol.19, No.5, pp.435-444, 1992.
  • [9] http://cedric.cnam.fr/~soutif/QKP/
  • [10] A. Billionnet, E. Soutif, “An exact method based on Lagrangean decomposition for the 0-1 quadratic knapsack problem”, European Journal of Operational Research, Vol.157, No.3, pp.565575, 2003.
  • [11] A. Kusiak, “The generalized group technology concept”, International Journal of Production Research, Vol.25, pp.561-569, 1987.
  • [12] G.K. Adil, D. Rajamani, D. Strong, “Cell formation considering alternate routings”. International Journal of Production Research, Vol.34, pp.1361–1380, 1996.
  • [13] Y.B. Moon, S.C. Chi, “Generalized part-family formation using neural network techniques”, Journal of Manufacturing Systems, Vol.11, pp.149-160, 1992.
  • [14] Y.K. Won, S.H. Kim, “Multiple criteria clustering algorithm for solving the group technology problem with multiple process routings”. Computers and Industrial Engineering, Vol.32, pp.207– 220, 1997.
  • [15] M.J. Rosenblatt, “The Dynamics of Plant Layout”, Management Science, Vol.3, pp.76-86, 1986.
  • [16] D.G. Conway, M.A. Ventakaraman, “Genetic search and the dynamic facility layout problem”, Computers and Operations Research, Vol.21, No.8, pp.955-960, 1994.
Konular Endüstri Mühendisliği
Dergi Bölümü Makaleler
Yazarlar

Yazar: Tuğba SARAÇ
E-posta: tsarac@ogu.edu.tr

Bibtex @araştırma makalesi { ogummf323852, journal = {Eskişehir Osmangazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi}, issn = {}, address = {Eskişehir Osmangazi Üniversitesi}, year = {}, volume = {25}, pages = {57 - 74}, doi = {}, title = {Solvıng The 0-1 Nonlınear Programmıng Models By Usıng The Modıfıed Subgradıent Algorıthm Based On Feasıble Values}, language = {en}, key = {cite}, author = {SARAÇ, Tuğba} } @araştırma makalesi { ogummf323852, journal = {Eskişehir Osmangazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi}, issn = {}, address = {Eskişehir Osmangazi Üniversitesi}, year = {}, volume = {25}, pages = {57 - 74}, doi = {}, title = {Tam Sayılı Doğrusal Olmayan Matematiksel Modellerin Uygun Çözüm Temelli Genişletilmiş Subgradient Algoritması İle Çözülmesi}, language = {tr}, key = {cite}, author = {SARAÇ, Tuğba} }
APA SARAÇ, T . (). Solvıng The 0-1 Nonlınear Programmıng Models By Usıng The Modıfıed Subgradıent Algorıthm Based On Feasıble Values. Eskişehir Osmangazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 25 (1), 57-74. Retrieved from http://dergipark.gov.tr/ogummf/issue/29999/323852
MLA SARAÇ, T . "Solvıng The 0-1 Nonlınear Programmıng Models By Usıng The Modıfıed Subgradıent Algorıthm Based On Feasıble Values". Eskişehir Osmangazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 25 (): 57-74 <http://dergipark.gov.tr/ogummf/issue/29999/323852>
Chicago SARAÇ, T . "Solvıng The 0-1 Nonlınear Programmıng Models By Usıng The Modıfıed Subgradıent Algorıthm Based On Feasıble Values". Eskişehir Osmangazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 25 (): 57-74
RIS TY - JOUR T1 - Tam Sayılı Doğrusal Olmayan Matematiksel Modellerin Uygun Çözüm Temelli Genişletilmiş Subgradient Algoritması İle Çözülmesi AU - Tuğba SARAÇ Y1 - 2017 PY - 2017 N1 - DO - T2 - Eskişehir Osmangazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi JF - Journal JO - JOR SP - 57 EP - 74 VL - 25 IS - 1 SN - - M3 - UR - Y2 - 2017 ER -
EndNote %0 Eskişehir Osmangazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi Tam Sayılı Doğrusal Olmayan Matematiksel Modellerin Uygun Çözüm Temelli Genişletilmiş Subgradient Algoritması İle Çözülmesi %A Tuğba SARAÇ %T Tam Sayılı Doğrusal Olmayan Matematiksel Modellerin Uygun Çözüm Temelli Genişletilmiş Subgradient Algoritması İle Çözülmesi %D 2017 %J Eskişehir Osmangazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi %P - %V 25 %N 1 %R %U