Yıl 2018, Cilt , Sayı 31, Sayfalar 275 - 284 2018-04-13

SABİT MALİYETLİ ULAŞTIRMA PROBLEMLERİ İÇİN BALİNSKİ YÖNTEMİ UYGULAMASI

Mert DEMİRCİOĞLU [1] , İbrahim Tolga COŞKUN [2]

71 126

Taşıma maliyetlerinin doğru bir şekilde hesaplanıp en uygun dağıtımın yapılması, işletmelerin daha hızlı büyümelerinde ve mevcut durumda karlarını maksimize edebilmelerinde önem arzetmektedir. Bu çalışma doğru güzergahları belirleyerek taşıma maliyetlerinin azaltılması ile ilgilidir. Çalışmada kullanılan yöntem ile uygun rotaların belirlenmesi için ulaştırma problemlerinde sabit maliyetleri de ele alınmıştır. Çalışmada sabit maliyetler ve sabit maliyetli ulaştırma problemleriyle ilgili mevcut literatür incelenmiştir. Sabit maliyetli ulaştırma problemlerinin çözümüne dair geliştirilen bazı algoritmalara değinilmiş ve ulusal düzeyde faaliyet gösteren bir şirketin mevcut dağıtım planındaki maliyetler ortaya konulmuştur. Balinski yöntemiyle oluşturulan yeni dağıtım planı belirlenerek ve dağıtım planları ile taşıma maliyetleri karşılaştırılmıştır. Belirlenen yeni dağıtım planı ile firmanın mevcut durumdaki maliyetlerinden daha düşük maliyette taşıma yapılabildiği ortaya konmuştur.

Ulaştırma Problemleri, Sabit Maliyet, Balinski Yaklaşımı
  • Adlakha, V. and Kowalski, K. (1999). “On The Fixed-Charge Transportation Problem”, OMEGA-The International Journal of Management Science, 27, 381-388. Adlakha, V., Kowalski, K. and Lev, B. (2010). “A Branching Method For The Fixed Charge Transportation Problem”, OMEGA-The International Journal of Management Science, 38, 393-397. Adlakha, V., Kowalski, K., Vemuganti, R. R., and Lev, B. (2007). “More-For-Less Algorithm For Fixed-Charge Transportation Problems”, OMEGA-The International Journal of Management Science, 35(1), s. 116-127. Balinski, M. L. (1961). “Fixed-cost transportation problems”, Naval Research Logistics, 8(1), 41-54. Barr, R. S., Glover F. and Klingman, D. (1981). “A New Optimization Method For Large Scale Fixed Charge Transportation Problems”, Operations Research, 29(3), 448-463. Barr, R., Glover, F. and Klingman, D. (1979). “Enhancements of spanning tree labelling procedures for network optimization”, INFOR: Information Systems and Operational Research, 17(1), 16-34. Charnes, A.and Klingman, D. (1971). “The More-For-Less Paradox İn The Distribution Model”, Cahiers du Centre d’Etudes de Recherche Operationelle, 13(1), 11-22. Cooper, L. (1975). “The Fixed Charge Problem-I: A New Heuristic Method”, Computers & Mathematics with Applications, 1(1), 89-95. Cooper, L. and Drebes, C. (1967). “An Approximate Solution Method For The Fixed Charge Problem”, Naval Research Logistics Quarterly, 14(1), 101-113. Denzler, D. R. (1969). “An Approximative Algorithm For The Fixed Charge Problem”, Naval Research Logistics Quarterly, 16(3), 411-416. Diaby, M. (1991). “Successive Linear Approximation Procedure For Generalized Fixed-Charge Transportation Problems”, The Journal of the Operational Research Society, 42(11), 991-1001. Gray, P. (1971). “Technical Note—Exact Solution Of The Fixed-Charge Transportation Problem”, Operations Research, 19(6), 1529-1538. Hirsch, W. M., and Dantzig, G. B. (1968). “The Fixed Charge Problem”, Naval Research Logistics Quarterly, 15(3), 413-424. Hirsch, W. M., and Hoffman, A. J. (1961). “Extreme Varieties, Concave Functions, And The Fixed Charge Problem”, Communications on Pure and Applied Mathematics, 14(3), 355-369. Kennington, J. (1976). “The Fixed-Charge Transportation Problem: A Computational Study with a Branch-And-Bound Code”, AIIE Transactions, 8(2), 241-247. Kennington, J. and Unger, E. (1976). “A New Branch-And-Bound Algorithm For The Fixed-Charge Transportation Problem”, Management Science, 22(10), 1116-1126. Kowalski, K. and Lev, B. (2007). New Approach To Fixed Charges Problems (FCP). International Journal of Management Science and Engineering Management, 2, 75-80. Orhon, F. (1983). “Ulaştırma İşletmelerinde Maliyet Muhasebesi”, Eko-Bil Yayıncılık, İstanbul. Öztürk, A. (2012). “Yöneylem Araştırması”, Ekin Basın Yayın Dağıtım, Bursa. Robers, P. and Cooper, L. (1976). “A Study Of The Fixed Charge Transportation Problem”, Computers & Mathematics with Applications, 2(2), 125-135. Sadagopan, S. and Ravindran, A. (1982). “A Vertex Ranking Algorithm For The Fixed-Charge Transportation Problem”, Journal of Optimization Theory and Applications, 37(2), 221-230. Spielberg, K. (1964). “On The Fixed Charge Transportation Problem”, InProceedings of the 1964 19th ACM national conference (pp. 11-101). ACM, New York, USA. Steinberg, D. I. (1970). “The fixed charge problem”, Naval Research Logistics Quarterly, 17(2), 217-235. Sun, M., Aronson, J. E., Mckeown, P. G. and Drınka, D., (1998), “A Tabu Search Heuristic Procedure for the Fixed Charge Transportation Problem”, European Journal of Operational Research, 106, 441-456. Walker, W. E. (1976). “A Heuristic Adjacent Extreme Point Algorithm For The Fixed Charge Problem”, Management Science, 22(5), 587-596.
Birincil Dil tr
Konular İşletme
Dergi Bölümü Makaleler
Yazarlar

Yazar: Mert DEMİRCİOĞLU (Sorumlu Yazar)

Yazar: İbrahim Tolga COŞKUN

Bibtex @araştırma makalesi { pausbed414850, journal = {Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi}, issn = {1308-2922}, eissn = {2147-6985}, address = {Pamukkale Üniversitesi}, year = {2018}, volume = {}, pages = {275 - 284}, doi = {10.30794/pausbed.414850}, title = {SABİT MALİYETLİ ULAŞTIRMA PROBLEMLERİ İÇİN BALİNSKİ YÖNTEMİ UYGULAMASI}, key = {cite}, author = {COŞKUN, İbrahim Tolga and DEMİRCİOĞLU, Mert} }
APA DEMİRCİOĞLU, M , COŞKUN, İ . (2018). SABİT MALİYETLİ ULAŞTIRMA PROBLEMLERİ İÇİN BALİNSKİ YÖNTEMİ UYGULAMASI. Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (31), 275-284. DOI: 10.30794/pausbed.414850
MLA DEMİRCİOĞLU, M , COŞKUN, İ . "SABİT MALİYETLİ ULAŞTIRMA PROBLEMLERİ İÇİN BALİNSKİ YÖNTEMİ UYGULAMASI". Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi (2018): 275-284 <http://dergipark.gov.tr/pausbed/issue/36524/414850>
Chicago DEMİRCİOĞLU, M , COŞKUN, İ . "SABİT MALİYETLİ ULAŞTIRMA PROBLEMLERİ İÇİN BALİNSKİ YÖNTEMİ UYGULAMASI". Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi (2018): 275-284
RIS TY - JOUR T1 - SABİT MALİYETLİ ULAŞTIRMA PROBLEMLERİ İÇİN BALİNSKİ YÖNTEMİ UYGULAMASI AU - Mert DEMİRCİOĞLU , İbrahim Tolga COŞKUN Y1 - 2018 PY - 2018 N1 - doi: 10.30794/pausbed.414850 DO - 10.30794/pausbed.414850 T2 - Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi JF - Journal JO - JOR SP - 275 EP - 284 VL - IS - 31 SN - 1308-2922-2147-6985 M3 - doi: 10.30794/pausbed.414850 UR - http://dx.doi.org/10.30794/pausbed.414850 Y2 - 2018 ER -
EndNote %0 Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi SABİT MALİYETLİ ULAŞTIRMA PROBLEMLERİ İÇİN BALİNSKİ YÖNTEMİ UYGULAMASI %A Mert DEMİRCİOĞLU , İbrahim Tolga COŞKUN %T SABİT MALİYETLİ ULAŞTIRMA PROBLEMLERİ İÇİN BALİNSKİ YÖNTEMİ UYGULAMASI %D 2018 %J Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi %P 1308-2922-2147-6985 %V %N 31 %R doi: 10.30794/pausbed.414850 %U 10.30794/pausbed.414850
ISNAD DEMİRCİOĞLU, Mert , COŞKUN, İbrahim Tolga . "SABİT MALİYETLİ ULAŞTIRMA PROBLEMLERİ İÇİN BALİNSKİ YÖNTEMİ UYGULAMASI". Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi / 31 (Nisan 2018): 275-284. http://dx.doi.org/10.30794/pausbed.414850