Cilt 22, Sayı 1, Sayfalar 1 - 1 2018-02-01

Mathematical Modelling of PAF with Voltage Supply for Non-linear Loads by GSSA Method
Doğrusal olmayan Yükler için Gerilim Kaynaklı PAF’nin GSSA Metodu ile Matematiksel Modellenmesi

MURAT TUNA [1] , Ayşe ERGÜN AMAÇ [2] , Süreyya KOCABEY [3]

21 26

This work aims to improve well known generalized averaged models for mathematical modelling of parallel active filter (PAF) with voltage supply. To achieve this task, the method is adopted to generalized state space averaging (GSSA) method. Non-linearity of the system is removed by using GSSA method. Relation between the state variables of the system is expressed by linear equations. An exact and fast approximation of the system parameters is achieved. Non-linearity of real elements that causes many problems such as long execution time, divergence, and huge produced files do not exist thanks to the method. A single phase full-bridge voltage supply inverter is proposed as a parallel active filter. A diode rectifier with RL load is used as a nonlinear load. In this study, simulation results of parallel active filter mathematically modeled with GSSA model are compared to real-time designed simulation results of parallel active filter realized power simulation with PSIM software.

Bu çalışma ile iyi bilinen genelleştirilmiş ortalama model kullanılarak gerilim kaynaklı paralel aktif filtrenin (PAF) matematiksel olarak modellenmesi amaçlanmaktadır. Bu amaç için genelleştirilmiş durum uzay ortalama metodu (GSSA) uyarlanmıştır. Sistemin doğrusalsızlığı GSSA yöntemi ile kaldırılır. Sistemin durum denklemleri arasındaki bağıntı doğrusal denklemler ile ifade edilir. Sistem parametrelerine tam ve hızlı bir yakınsama sağlanır. Bu yöntem sayesinde uzun çalışma süresi, sapma ve büyük dosya boyutları gibi birçok soruna neden olan doğrusal olmayan gerçek devre elemanları ortadan kaldırılmıştır. Paralel aktif filtre olarak tek fazlı tam köprü voltaj besleme invertörü önerilmiştir. Doğrusal olmayan yük olarak RL yüklü diyot doğrultucu devresi kullanılmıştır. Bu çalışma sonucunda, GSSA yöntemi ile matematiksel olarak modellenen paralel aktif filtrenin benzetim sonuçları ile PSIM yazılıyla gerçek zamanlı tasarlanan paralel aktif filtrenin güç benzetim sonuçları karşılaştırılmıştır.

  • [1] G. Nirmal, A. Vineesha, and A. Professor, “Design and Implementation of Shunt Active Power Filter Based Predictive Control Algorithm,” International Journal of Advanced Research in Electrical, vol. 4, no. 3, pp. 1531-1538, 2015.
  • [2] Surendhar, B., Ramu, K., “Shunt Active Power Filter for Power Quality Improvement By SAPF Using PV System,” International Journal & Magazine of Engineering, Technology, Management and Research, vol. 2, no. 12, pp. 75–81, 2015.
  • [3] A. Singh and P. Baredar, “Power quality analysis of shunt active power filter based on renewable energy source,” in 2014 International Conference on Advances in Engineering & Technology Research (ICAETR - 2014), 2014, pp. 1–5.
  • [4] M. Vijayakumar and S. Vijayan, “PV Based Three-Level NPC Shunt Active Power Filter with Extended Reference Current Generation Method,” International Journal of Electrical Energy, vol. 4, no. 2, pp. 258–267, 2014.
  • [5] B. Majhi, “Design of a Shunt Active Power Filter with Grid connected Inverter Control for a Photovoltaic System,” M.S. thesis, Dept. Elect. Eng., National Institute of Technology, Rourkela-Odisha, India, 2015.
  • [6] E. Srinivasulu Reddy and P. R. Chandra, “Design and Analysis of Shunt Active Power Filter for Grid Connected RES System,” International Journal of Innovative Technologies, vol. 4, no. 6, pp. 0963–0968, 2016.
  • [7] A. J. Viji and T. A. A. Victoire, “A comparative study of 3 Phi SAPF with Different reference current generation,” Control Engineering and Applied Informatics, vol. 16, no. 4, pp. 99–106, Dec. 2014.
  • [8] Y. Chen, T. Ji, M. Li, Q. Wu, and X. Wang, “Power System Harmonic Estimation Based on Park Transform,” J Electr Eng Technol, vol. 11, no. 1, pp. 1921–718, 2016.
  • [9] H. Akagi, “New trends in active filters for power conditioning,” IEEE Transactions on Industry Applications, vol. 32, no. 6, pp. 1312–1322, 1996.
  • [10] H. Akagi, “Active Harmonic Filters,” Proceedings of the IEEE, vol. 93, no. 12, pp. 2128–2141, Dec. 2005.
  • [11] V. A. Jeraldine and M. Sudhakaran, “Reduction of THD in Single Phase PAF With PSD Method for Reference Current Generation,” International Journal of Engineering, vol. 1, no. 5, pp. 31–34, 2012.
  • [12] A. K. Al-Othman, M. E. Alsharidah, N. A. Ahmed, and B. N. Alajmi, “Model Predictive Control for Shunt Active Power Filter in Synchronous Reference Frame,” J Electr Eng Technol, vol. 11, pp. 1921–718, 2016.
  • [13] B. Sun, Y. Xie, H. Ma, and L. Cheng, “Analysis and Application of Repetitive Control Scheme for Three-Phase Active Power Filter with Frequency Adaptive Capability,” J Electr Eng Technol, vol. 11, pp. 1921–718, 2016.
  • [14] T. Platek, “Power system stability with parallel active filter ensuring compensation of capacitive reactive power of a resonant LC circuit,” Bulletin Of The Polish Academy Of Sciences Technical Sciences, vol. 60, no. 2, 2012.
  • [15] H. Nawar, A. Alobidi, and M. Ismail, “Parallel Active Filter Modelling and control strategy for harmonic elimination,” International Journal of Innovative Research in Advanced Engineering, vol. 2, no. 2, pp. 2349–2163, 2015.
  • [16] M. Gwóźdź, “Power electronics parallel active filter with controlled dynamics and improved EM immunity,” Przegląd Elektrotechniczny (Electrical Review), vol. 87, no. 1, pp. 33–2097, 2011.
  • [17] A. Nasiri, A. E. Amac, and A. Emadi, “Series-Parallel Active Filter/Uninterruptible Power Supply System,” Electric Power Components and Systems, vol. 32, no. 11, pp. 1151–1163, Nov. 2004.
  • [18] A. Emadi, “Modeling and Analysis of Multiconverter DC Power Electronic Systems Using the Generalized State-Space Averaging Method,” IEEE Transactions on Industrial Electronics, vol. 51, no. 3, pp. 661–668, Jun. 2004.
  • [19] A. Emadi, “Modeling of Power Electronic Loads in AC Distribution Systems Using the Generalized State-Space Averaging Method,” IEEE Transactions on Industrial Electronics, vol. 51, no. 5, pp. 992–1000, Oct. 2004.
  • [20] J. Mahdavi, A. Emaadi, M. D. Bellar, and M. Ehsani, “Analysis of power electronic converters using the generalized state-space averaging approach,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 44, no. 8, pp. 767–770, 1997.
  • [21] S. Rahmani, K. Al-Haddad, and H. Y. Kanaan, “A comparative study of shunt hybrid and shunt active power filters for single-phase applications: Simulation and experimental validation,” Mathematics and Computers in Simulation, vol. 71, no. 4–6, pp. 345–359, Jun. 2006.
  • [22] A. Nasiri and A. Emadi, “Modeling, simulation, and analysis of active filter systems using generalized state space averaging method,” in IECON’03. 29th Annual Conference of the IEEE Industrial Electronics Society (IEEE Cat. No.03CH37468), 2003, vol. 3, pp. 1999–2004.
  • [23] S. Rechka, É. Ngandui, J. Xu, and P. Sicard, “Performance evaluation of harmonics detection methods applied to harmonics compensation in presence of common power quality problems,” Mathematics and Computers in Simulation, vol. 63, no. 3–5, pp. 363–375, Nov. 2003.
  • [24] S. R. Sanders, J. M. Noworolski, X. Z. Liu, and G. C. Verghese, “Generalized averaging method for power conversion circuits,” IEEE Transactions on Power Electronics, vol. 6, no. 2, pp. 251–259, Apr. 1991.
  • [25] H. Ebrahimi and H. El-Kishky, “A novel Generalized State-Space Averaging (GSSA) model for advanced aircraft electric power systems,” Energy Conversion and Management, vol. 89, pp. 507–524, Jan. 2015.
  • [26] L. J. Yu, T. Houjun, and G. Xin, “Modelling of a Witricity System Using GSSA Method,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 12, no. 5, pp. 3697–3704, 2014.
  • [27] M. Tuna, A. E. Amac, and M. Ak, “The comparative analysis of boost DC/DC converter used in hybrid electric vehicles,” Energy Education Science and Technology Part A: Energy Science and Research, vol. 30, no. 1, 2012.
  • [28] L. Dong, H. Ma, and F. Xu, “Modeling and analysis of PWM converters with a new GSSA method,” in 2008 34th Annual Conference of IEEE Industrial Electronics, 2008, pp. 821–826.
  • [29] P. T. Krein, J. Bentsman, R. M. Bass, and B. L. Lesieutre, “On the use of averaging for the analysis of power electronic systems,” IEEE Transactions on Power Electronics, vol. 5, no. 2, pp. 182–190, Apr. 1990.
  • [30] H. E. Darkhaneh, J. R. Gatabi, and H. El-Kishky, “A novel GSSA method for modeling of controllers in the multi-converter system of an Advanced Aircraft Electric Power System (AAEPS),” in 2012 IEEE International Power Modulator and High Voltage Conference (IPMHVC), 2012, pp. 795–798.
  • [31] A. Yazdani and R. Iravani, “A Generalized State-Space Averaged Model of the Three-Level NPC Converter for Systematic DC-Voltage-Balancer and Current-Controller Design,” IEEE Transactions on Power Delivery, vol. 20, no. 2, pp. 1105–1114, Apr. 2005.
  • [32] C. Q. Lee, “Generalized state-space averaging approach for a class of periodically switched networks,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 44, no. 11, pp. 1078–1081, 1997.
Konular Elektrik Elektronik Mühendisliği
Yayımlanma Tarihi Şubat 2018
Dergi Bölümü Araştırma Makalesi
Yazarlar

Yazar: MURAT TUNA
E-posta: murat.tuna@klu.edu.tr
Kurum: Kırklareli Üniversitesi
Ülke: Turkey


Yazar: Ayşe ERGÜN AMAÇ
E-posta: ayseergun@kocaeli.edu.tr
Kurum: Kocaeli Üniversitesi
Ülke: Turkey


Yazar: Süreyya KOCABEY
E-posta: sureyyakocabey@klu.edu.tr
Kurum: Kırklareli Üniversitesi
Ülke: Turkey


Bibtex @araştırma makalesi { saufenbilder315352, journal = {SAÜ Fen Bilimleri Enstitüsü Dergisi}, issn = {1301-4048}, address = {Sakarya Üniversitesi}, year = {2018}, volume = {22}, pages = {1 - 1}, doi = {10.16984/saufenbilder.315352}, title = {Mathematical Modelling of PAF with Voltage Supply for Non-linear Loads by GSSA Method}, language = {en}, key = {cite}, author = {KOCABEY, Süreyya and TUNA, MURAT and ERGÜN AMAÇ, Ayşe} } @araştırma makalesi { saufenbilder315352, journal = {SAÜ Fen Bilimleri Enstitüsü Dergisi}, issn = {1301-4048}, address = {Sakarya Üniversitesi}, year = {2018}, volume = {22}, pages = {1 - 1}, doi = {10.16984/saufenbilder.315352}, title = {Doğrusal olmayan Yükler için Gerilim Kaynaklı PAF’nin GSSA Metodu ile Matematiksel Modellenmesi}, language = {tr}, key = {cite}, author = {KOCABEY, Süreyya and TUNA, MURAT and ERGÜN AMAÇ, Ayşe} }
APA TUNA, M , ERGÜN AMAÇ, A , KOCABEY, S . (2018). Mathematical Modelling of PAF with Voltage Supply for Non-linear Loads by GSSA Method. SAÜ Fen Bilimleri Enstitüsü Dergisi, 22 (1), 1-1. DOI: 10.16984/saufenbilder.315352
MLA TUNA, M , ERGÜN AMAÇ, A , KOCABEY, S . "Mathematical Modelling of PAF with Voltage Supply for Non-linear Loads by GSSA Method". SAÜ Fen Bilimleri Enstitüsü Dergisi 22 (2018): 1-1 <http://dergipark.gov.tr/saufenbilder/issue/30795/315352>
Chicago TUNA, M , ERGÜN AMAÇ, A , KOCABEY, S . "Mathematical Modelling of PAF with Voltage Supply for Non-linear Loads by GSSA Method". SAÜ Fen Bilimleri Enstitüsü Dergisi 22 (2018): 1-1
RIS TY - JOUR T1 - Doğrusal olmayan Yükler için Gerilim Kaynaklı PAF’nin GSSA Metodu ile Matematiksel Modellenmesi AU - MURAT TUNA , Ayşe ERGÜN AMAÇ , Süreyya KOCABEY Y1 - 2018 PY - 2018 N1 - doi: 10.16984/saufenbilder.315352 DO - 10.16984/saufenbilder.315352 T2 - SAÜ Fen Bilimleri Enstitüsü Dergisi JF - Journal JO - JOR SP - 1 EP - 1 VL - 22 IS - 1 SN - 1301-4048-2147-835X M3 - doi: 10.16984/saufenbilder.315352 UR - http://dx.doi.org/10.16984/saufenbilder.315352 Y2 - 2017 ER -
EndNote %0 SAÜ Fen Bilimleri Enstitüsü Dergisi Doğrusal olmayan Yükler için Gerilim Kaynaklı PAF’nin GSSA Metodu ile Matematiksel Modellenmesi %A MURAT TUNA , Ayşe ERGÜN AMAÇ , Süreyya KOCABEY %T Doğrusal olmayan Yükler için Gerilim Kaynaklı PAF’nin GSSA Metodu ile Matematiksel Modellenmesi %D 2018 %J SAÜ Fen Bilimleri Enstitüsü Dergisi %P 1301-4048-2147-835X %V 22 %N 1 %R doi: 10.16984/saufenbilder.315352 %U 10.16984/saufenbilder.315352