Yıl 2017, Cilt 21, Sayı 3, Sayfalar 961 - 966 2017-03-31

Amin Grupları ile Fonksiyonelleştirilmiş MCM-41 Mezogözenekli Silika Üzerine CO2 Adsorpsiyonu

Müge SARI YILMAZ [1]

876 368

Bu çalışmada, saf silika kaynağından üretilen mezogözenekli silika MCM-41’in yüzeyi aşılama yöntemiyle amin grupları ile fonksiyonelleştirilmiştir. Fonksiyonelleştirilen ürünün karakterizasyonu X-ışınları difraktometresi (XRD), termogravimetri/diferansiyel termal analiz (TG/DTA), Fourier dönüşümlü infrared spektroskopisi (FTIR) ve Brunauer-Emmett-Teller (BET) cihazında gerçekleştirilmiştir. Fonksiyonelleştirilen ve fonksiyonelleştirilmemiş MCM-41 adsorbanlarının CO2 adsorpsiyon kapasiteleri 25, 75 ve 100°C’de TG/DTA cihazı ile belirlenmiştir. Sonuç olarak, fonksiyonelleştirilen MCM-41’in daha yüksek CO2 adsorpsiyon kapasitesine sahip olduğu görülmüştür.
MCM-41, CO2; Adsorpsiyon; Aşılama; Amin grubu
  • [1] Chang, A.C.C., Chuang, S.S.C., Gray, M., Soong, Y., 2003. In-Situ Infrared Study of CO2 adsorption on SBA-15 grafted with γ-(Aminopropyl) triethoxysilane. Energy Fuels, 17(2003), 468-476.
  • [2] Metz, S.B., Davidson, O., de Coninck, H., Loos, M. Meyer, L., 2005. IPCC special report on carbon dioxide capture and storage. Cambridge University Press.
  • [3] Harlick, J. E. P., Tezel, F. H., 2004. An experimental adsorbent screening study for CO2 removal from N2. Microporous and Mesoporous Materials, 76(2004), 71-79.
  • [4] Jaramillo, E., Chandross, M., 2004. Adsorption of Small Molecules in LTA Zeolites. 1. NH3, CO2, and H2O in Zeolite 4A. The Journal of Physical Chemistry B, 108(2004), 20155-20159.
  • [5] Siriwardane, R. V., Shen, M. S., Fisher, E. P., Poston, J.A., 2001. Adsorption of CO2 on molecular sieves and activated carbon. Energy and Fuels, 15(2001), 279-284.
  • [6] Na, B. K., Lee, H., Koo, K. K., Song, H. K., 2002. Effect of
  • rinse and recycle methods on the pressure swing adsorption process to recover CO2 from power plant flue gas using activated carbon. Industrial and Engineering Chemistry Research, 41(2002), 5498-5503.
  • [7] Gomes V. G., Yee, K. W. K., 2002. Pressure swing adsorption for carbon dioxide sequestration from exhaust gases. Separation and Purification Technology, 28(2002), 161-171.
  • [8] Ram Reddy, M. K., Xu, Z. P., Lu, G. Q., Diniz da Costa, J. C., 2006. Layered double hydroxides for CO2 capture: structure evolution and regeneration. Industrial and Engineering Chemistry Research, 45(2006), 7504-7509.
  • [9] Feng, B., An, H., Tan, E., 2007. Screening of CO2 adsorbing materials for zero emission power generation systems. Energy and Fuels, 21(2007), 426-434.
  • [10] Torrisi, A., Bell, R. G., Draznieks, C. M., 2010. Functionalized MOFs for enhanced CO2 capture. Crystal Growth and Design, 10(2010), 2839-2841.
  • [11] Hicks, J. C., Drese, J. H., Fauth, D. J., Gray, M. L., Qi, G., Jones, C. W., 2008. Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly. Journal of American Chemical Society, 130(2008), 2902-2903.
  • [12] Chakma, A., 1997. CO2 capture processes-opportunities for improved energy efficiencies. Energy Conversion and Management, 38(1997), S51-S56.
  • [13] Veawab, A., Tontiwachwuthikul, P., Chakma, A. 1999. Corrosion behavior of carbon steel in the CO2 absorption process using aqueous amine solutions. Industrial and Engineering Chemistry Research, 38(1999), 3917-3924.
  • [14] Bello, A., Idem R.O., 2006. Comprehensive study of the kinetics of the oxidative degradation of CO2 loaded and concentrated aqueous monoethanolamine (MEA) with and without sodium metavanadate during CO2 absorption from flue gases. Industrial and Engineering Chemistry Research, 45(2006), 2569-2579.
  • [15] Surble, S., Millange, Serre, F.C., Duren, T., Latroche, M., Bourrelly, S., Llewellyn, P. L., Ferey, G. 2006. Synthesis of MIL-102, a chromium carboxylate metal−organic framework, with gas sorption analysis. Journal of American Chemical Society, 128(2006), 14889−14896.
  • [16] Ciesla, U., Schuth, F., 1999. Ordered mesoporous materials. Microporous and Mesoporous Materials, 27(1999), 131.
  • [17] Beck, J. S., Vartuli, C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T. W., Olson, D. H., Sheppard E. W., McCullen, S. B., Higgins, J. B., Schlenker, J. L., 1992. A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of American Chemical Society, 114(1992), 10834-10843.
  • [18] Corma, A., Martinez, A., Martinezsoria, V. Monton, J.B., 1995. Hydrocracking of vacuum gasoil on the novel mesoporous MCM-41 aluminosilicate catalyst. Journal of Catalysis, 153(1995), 25-31.
  • [19] Vallet-Regi, M., Rámila, A., Real del R.P., 2001. A new property of MCM-41: drug delivery system. Chemistry of Materials, 13(2001), 308–311.
  • [20] Mundaca-Uribe, R., Bustos-Ramírez, F., Zaror-Zaror, C., Aranda-Bustos, M., Neira-Hinojosa, J., Peña-Farfal, C., 2014. Development of a bienzymatic amperometric biosensor to determine uric acid in human serum, based on mesoporous silica (MCM-41) for enzyme immobilization, Sensors and Actuators B: Chemical, 195(2014), 58–62.
  • [21] Belmabkhout, Y., Serna-Guerrero, R. and Sayari, A., 2009. Adsorption of CO2 from dry gases on MCM-41 silica at ambient temperature and high pressure. 1: pure CO2 adsorption. Chemical Engineering Science, 64(2009), 3721–3728.
  • [22] Wu, Y., Zhang, M., Zhao, H., Yang, S. Arkin, A., 2014. Functionalized mesoporous silica material and anionic dye adsorption: MCM-41 incorporated with amine groups for competitive adsorption of acid fuchsine and acid orange II. RSC Advances, 4(2014), 61256-61267.
  • [23] Kim, S., Marand, E., 2008. High permeability nano-composite membranes based on mesoporous MCM-41 nanoparticles in a polysulfone matrix. Microporous and Mesoporous Materials, 114(2008), 129–136.
  • [24] Kresge, C., Leonowicz, M., Roth, W., Vartuli, J. C., Beck, J. S., 1992. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(1992), 710-712.
  • [25] Araki, S. Doi, H. Sano, Y., Tanaka, S., Miyake, Y., 2009. Preparation and CO2 adsorption properties of aminopropyl-functionalized mesoporous silica microspheres. Journal of Colloid and Interface Science, 339(2009), 382.
  • [26] Vartuli, J. C., Kresge, C. T., Roth, W. J., Sheppard E. W., 1996. Designed synthesis of mesoporous molecular sieve systems using surfactant-directing agents. Advanced catalysts and nanostructured materials. Academic Press.
  • [27] Vartuli, J. C., Malek, A., Roth, W. J., Kresge, C. T., McCullen, S. B., 2001. The sorption properties of as-synthesized and calcined MCM-41 and MCM-48. Microporous Mesoporous Materials, 44(2001), 691.
  • [28] Vartuli, J. C., Shih, S. S., Kresge, C. T., Beck J. S., 1998. Potential applications for M41S type mesoporous molecular sieves. Studies in Surface Science and Catalysis, 117(1998), 13.
  • [29] Mokhonoana, M. P., Coville, N. J., 2010. Synthesis of [Si]-MCM-41 from TEOS and water glass: the water glass-enhanced condensation of TEOS under alkaline conditions. Journal of Sol-Gel Science and Technology, 54(2010), 83.
  • [30] Santos, C. T., Bourrelly, S., Llewellyn, P. L., Carneiroa, J. ´W. M., Ronconi, C. M., 2015. Adsorption of CO2 on amine-functionalised MCM-41: experimental and theoretical studies. Physical Chemistry Chemical Physics, 17(2015), 11095.
  • [31] Mello, M. R., Phanon, D., Silveira, G. Q., Llewellyn P. L., Ronconi, C., M., 2011. Amine-modified MCM-41 mesoporous silica for carbon dioxide capture. Microporous Mesoporous Materials, 143(2011), 174-179.
  • [32] Ishikawa, T., Matsuda, M., Yasukawa, A., Kandori, K., Inagaki, S., Fukushima, T., Kondo, S., 1996. Surface silanol groups of mesoporous silica FSM-16. Journal of the Chemical Society, Faraday Transactions, 92(1996), 1985-1989.
  • [33] Anbia, M., Lashgari, M., 2009. Synthesis of amino-modified ordered mesoporous silica as a new nano sorbent for the removal of chlorophenols from aqueous media, Chemical Engineering Journal, 150(2009), 555–560.
  • [34] Blitz, J., Murthy, P., Shreedhara, R. S., Leyden D. E. 1988. The role of amine structure on catalytic activity for silylation reactions with Cab-O-Sil Journal of Colloid and Interface Science, 126(1988), 387–439.
Konular
Dergi Bölümü Makaleler
Yazarlar

Yazar: Müge SARI YILMAZ
E-posta: mugesari@yildiz.edu.tr

Bibtex @ { sdufenbed382266, journal = {Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi}, issn = {}, address = {Süleyman Demirel Üniversitesi}, year = {2017}, volume = {21}, pages = {961 - 966}, doi = {10.19113/sdufbed.69265}, title = {Amin Grupları ile Fonksiyonelleştirilmiş MCM-41 Mezogözenekli Silika Üzerine CO2 Adsorpsiyonu}, key = {cite}, author = {SARI YILMAZ, Müge} }
APA SARI YILMAZ, M . (2017). Amin Grupları ile Fonksiyonelleştirilmiş MCM-41 Mezogözenekli Silika Üzerine CO2 Adsorpsiyonu. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21 (3), 961-966. Retrieved from http://dergipark.gov.tr/sdufenbed/issue/34610/382266
MLA SARI YILMAZ, M . "Amin Grupları ile Fonksiyonelleştirilmiş MCM-41 Mezogözenekli Silika Üzerine CO2 Adsorpsiyonu". Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21 (2017): 961-966 <http://dergipark.gov.tr/sdufenbed/issue/34610/382266>
Chicago SARI YILMAZ, M . "Amin Grupları ile Fonksiyonelleştirilmiş MCM-41 Mezogözenekli Silika Üzerine CO2 Adsorpsiyonu". Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21 (2017): 961-966
RIS TY - JOUR T1 - Amin Grupları ile Fonksiyonelleştirilmiş MCM-41 Mezogözenekli Silika Üzerine CO2 Adsorpsiyonu AU - Müge SARI YILMAZ Y1 - 2017 PY - 2017 N1 - DO - T2 - Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi JF - Journal JO - JOR SP - 961 EP - 966 VL - 21 IS - 3 SN - -1308-6529 M3 - UR - Y2 - 2018 ER -
EndNote %0 Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi Amin Grupları ile Fonksiyonelleştirilmiş MCM-41 Mezogözenekli Silika Üzerine CO2 Adsorpsiyonu %A Müge SARI YILMAZ %T Amin Grupları ile Fonksiyonelleştirilmiş MCM-41 Mezogözenekli Silika Üzerine CO2 Adsorpsiyonu %D 2017 %J Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi %P -1308-6529 %V 21 %N 3 %R %U