Yıl 2017, Cilt 8, Sayı 3, Sayfalar 40 - 46 2017-12-20

Adipoz doku ve enerji metabolizması üzerine etkileri

Meltem Mermer [1] , Nilüfer Acar Tek [2]

149 1754

İnsanlarda beyaz yağ dokusu ve kahverengi yağ dokusu olmak üzere farklı işlevlere sahip iki çeşit yağ dokusu vardır. Beyaz yağ dokusu, vücutta çok miktarda bulunan, fazla enerjinin depolandığı ve enerji homeostazına katkıda bulunan endokrin bir organ olarak nitelendirilmektedir. Kahverengi yağ dokusu özellikle memelilerde ve yeni doğanlarda termoregülasyonu sağlamaktadır. Uncoupling protein kahverengi yağ dokusunun belirleyici proteinidir ve enerjinin ısı olarak açığa çıkmasını sağlar. Yetişkinlerde kahverengi yağ dokusu servikal, supraklavukular, axillar, paravertebral, mediastinal abdominal bölgenin üst kısmında bulunur. Beyaz yağ dokusu vücutta visseral beyaz yağ dokusu ve subkutan beyaz yağ dokusu olmak üzere 2 ana bölgede depolanır. Hormonal etkileşimler, kronik soğuk maruziyeti ve egzersiz gibi birçok çevresel faktör ile beyaz yağ dokusunda kahverengi (bej) adipozitler gelişebilir. Yağ dokuları çeşitli hormonal mekanizmalar aracılığıyla enerji harcamasında rol almaktadır. Kahverengi yağ dokusu yetişkin insanlarda da mevcuttur ve yüksek miktarı ile düşük vücut ağırlığı ilişkilidir. Yağ dokusu mitokondriyasının işlev bozukluğu obezite gelişiminden sorumludur. Soğuk maruziyeti ve besin alımına cevap olarak sempatik sinir sistemi aktivitasyonu, kahverengi yağ dokusunun uyarılmasına neden olur. Kahverengi yağ dokusu merkezli bu durum soğuk kaynaklı termogenezis ve besinlerin termik etkisi olarak tanımlanır ve toplam enerji harcamasını artırmaktadır. Bu derlemede vücut yağ dokularının özellikleri ve enerji harcaması üzerine etkileri incelenmiştir.

Beyaz yağ dokusu, kahverengi yağ dokusu, termoregülasyon, enerji metabolizması
  • 1. Saely CH, Geıger K, Drexel H. Brown versus white adipose tissue: a mini-review. Gerontology 2010; 58: 15-23.
  • 2. Bonet ML, Oliver P, Palou A. Pharmacological and nutritional agents promoting browning of white adipose tissue. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2013;1831(5):969-85.
  • 3. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng Y, Doria A, Kolodny GM, Kahn CR. Identification and importance of brown adipose tissue in adult humans. New England Journal of Medicine 2009;360: 1509-1517.
  • 4. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerbäck S, Nuutila P. Functional brown adipose tissue in healthy adults. New England Journal of Medicine 2009;360(15):1518-25.
  • 5. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ. Cold-activated brown adipose tissue in healthy men. New England Journal of Medicine 2009;360(15):1500-8.
  • 6. Gilsanz V, Smith ML, Goodarzian F, Kim M, Wren TA, Hu HH. Changes in brown adipose tissue in boys and girls during childhood and puberty. The Journal of pediatrics 2012;160(4):604-9.
  • 7. Saito M. Brown Adipose tissue as a regulator of energy expenditure and body fat in humans. Diabetes & Metabolism Journal 2013;37(1):22-9.
  • 8. De Pauw A, Tejerina S, Raes M, Keijer J, Arnould T. Mitochondrial (dys) function in adipocyte (de) differentiation and systemic metabolic alterations. The American journal of pathology 2009;175(3):927-39.
  • 9. Boudina S, Graham T E. Mitochondrial function/dysfunction in white adipose tissue. Experimental physiology 2014;99: 1168-1178.
  • 10. Medina-Gómez G. Mitochondria and endocrine function of adipose tissue. Best Practice & Research Clinical Endocrinology & Metabolism 2012;26(6):791-804.
  • 11. Timmons JA, Wennmalm K, Larsson O, Walden TB, Lassmann T, Petrovic N, Hamilton DL, Gimeno RE, Wahlestedt C, Baar K, Nedergaard J. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proceedings of the National Academy of Sciences 2007;104(11):4401-6.
  • 12. Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Tempst P. PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008;454:961-967.
  • 13. Farmer, SR. Brown fat and skeletal muscle: unlikely cousins? Cell 2008;134(5):726-727.
  • 14. Kim SH, Plutzky J. Brown fat and browning for the treatment of obesity and related metabolic disorders. Diabetes & metabolism journal 2016;40(1):12-21.
  • 15. Ravaglia G, Forti P, Maioli F, Boschi F, Cicognani A, Gasbarrini G. Measurement of body fat in healthy elderly men: a comparison of methods. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 1999;54(2):70-76.
  • 16. Yoneshiro T, Aita S, Matsushita M, Okamatsu‐Ogura Y, Kameya T, Kawai Y, Miyagawa M, Tsujisaki M, Saito M. Age‐related decrease in cold‐activated brown adipose tissue and accumulation of body fat in healthy humans. Obesity 2011;19(9):1755-60.
  • 17. Tam CS, Lecoultre V, Ravussin E. Brown adipose tissue mechanisms and potential therapeutic targets. Circulation 2012;125(22):2782-91.
  • 18. Schrauwen P, van Marken Lichtenbelt WD, Spiegelman BM. The future of brown adipose tissues in the treatment of type 2 diabetes. Diabetologia 2015;58(8):1704-7.
  • 19. Smith RE. Thermogenic activity of the hibernating gland in the cold-acclimated rat. Physiologist 1961;4:113.
  • 20. Nicholls DG, Bernson VS, Heaton GM. The identification of the component in the inner membrane of brown adipose tissue mitochondria responsible for regulating energy dissipation. InEffectors of Thermogenesis 1978; 89-93.
  • 21. Wehrli NE, Bural G, Houseni M, Alkhawaldeh K, Alavi A, Torigian DA. Determination of age-related changes in structure and function of skin, adipose tissue, and skeletal muscle with computed tomography, magnetic resonance imaging, and positron emission tomography. InSeminars in nuclear medicine 2007;37(3):195-205.
  • 22. Thien T. Tran and C. Ronald Kahn. Transplantation of Adipose Tissue and Adipose-Derived Stem Cells as a Tool to Study Metabolic Physiology and for Treatment of Disease. Nat Rev Endocrinol 2010 6(4):195–213.
  • 23. Stanford KI, Middelbeek RJ, Goodyear LJ. Exercise effects on white adipose tissue: beiging and metabolic adaptations. Diabetes 2015;64(7):2361-8.
  • 24. Lee SY, Gallagher D. Assessment methods in human body composition. Current opinion in clinical nutrition and metabolic care 2008, 11.5: 566.
  • 25. Cohade C, Mourtzikos KA, Wahl RL. “USA-Fat”: prevalence is related to ambient outdoor temperature—evaluation with 18F-FDG PET/CT. Journal of Nuclear Medicine 2003;44(8):1267-70.
  • 26. Hu HH. Magnetic resonance of brown adipose tissue: a review of current techniques. Critical Reviews™ in Biomedical Engineering 2015, 43;2-3:161-168.
  • 27. Ahbab S, Yenigün M. Yağ Dokusu Hormonları; Genel Bir Bakış. Medical Bulletin of Haseki/Haseki Tip Bulteni. 2011; 49: 96-98.
  • 28. Valsamakis G, McTernan PG, Chetty R, Al Daghri N, Field A, Hanif W, Barnett AH, Kumar S. Modest weight loss and reduction in waist circumference after medical treatment are associated with favorable changes in serum adipocytokines. Metabolism 2004;53(4):430-4.
  • 29. Emral R. Adiponektin ve Diğer Sitokinler. Turkiye Klinikleri Journal of Medical Sciences 2006;26:409-420.
  • 30. Rezai-Zadeh K, Yu S, Jiang Y, Laque A, Schwartzenburg C, Morrison CD, Derbenev AV, Zsombok A, Münzberg H. Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake. Molecular metabolism 2014;3(7):681-93.
  • 31. Commins SP, Watson PM, Frampton IC, Gettys TW. Leptin selectively reduces white adipose tissue in mice via a UCP1-dependent mechanism in brown adipose tissue. American Journal of Physiology-Endocrinology And Metabolism 2001;280(2):372-7.
  • 32. Van Swieten MM, Pandit R, Adan RA, van der Plasse G. The neuroanatomical function of leptin in the hypothalamus. Journal of chemical neuroanatomy 2014;61:207-20.
  • 33. Yadav A, Kataria MA, Saini V, Yadav A. Role of leptin and adiponectin in insulin resistance. Clinica Chimica Acta 2013;417:80-84.
  • 34. Lafontan M, Viguerie N. Role of adipokines in the control of energy metabolism: focus on adiponectin. Current opinion in pharmacology 2006;6(6):580-5.
  • 35. Bertin E, Nguyen P, Guenounou M, Durlach V, Potron G, Leutenegger M. Plasma levels of tumor necrosis factor-alpha (TNF-alpha) are essentially dependent on visceral fat amount in type 2 diabetic patients. Diabetes Metab 2000;26(3):178-82.
  • 36. Jung UJ, Choi MS. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. International journal of molecular sciences 2014;15(4):6184-223.
  • 37. Sethi JK, Hotamisligil GS. The role of TNFα in adipocyte metabolism. InSeminars in cell & developmental biology 1999;10(1): 19-29.
  • 38. Klıngenspor M. Cold‐induced recruitment of brown adipose tissue thermogenesis. Experimental physiology 2003;88:141-148.
  • 39. Inokuma KI, Ogura-Okamatsu Y, Toda C, Kimura K, Yamashita H, Saito M. Uncoupling protein 1 is necessary for norepinephrine-induced glucose utilization in brown adipose tissue. Diabetes 2005;54(5):1385-91.
  • 40. Shimizu Y, Nikami H, Saito M. Sympathetic activation of glucose utilization in brown adipose tissue in rats. Journal of biochemistry 1991;110(5):688-92.
  • 41. Murano I, Barbatelli G, Giordano A, Cinti S. Noradrenergic parenchymal nerve fiber branching after cold acclimatisation correlates with brown adipocyte density in mouse adipose organ. Journal of anatomy 2009;214(1):171-8.
  • 42. Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, Giacobino JP, De Matteis R, Cinti S. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. American Journal of Physiology-Endocrinology and Metabolism 2010;298(6):1244-53.
  • 43. Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, Iwanaga T, Miyagawa M, Kameya T, Nakada K, Kawai Y. High incidence of metabolically active brown adipose tissue in healthy adult humans effects of cold exposure and adiposity. Diabetes 2009;58(7):1526-31.
  • 44. Carter EA, Bonab AA, Hamrahi V, Pitman J, Winter D, Macintosh LJ, Cyr EM, Paul K, Yerxa J, Jung W, Tompkins RG. Effects of burn injury, cold stress and cutaneous wound injury on the morphology and energy metabolism of murine brown adipose tissue (BAT) in vivo. Life sciences 2011;89(3):78-85.
  • 45. Gollisch KS, Brandauer J, Jessen N, Toyoda T, Nayer A, Hirshman MF, Goodyear LJ. Effects of exercise training on subcutaneous and visceral adipose tissue in normal-and high-fat diet-fed rats. American Journal of Physiology-Endocrinology and Metabolism 2009;297(2):495-504.
  • 46. Stanford KI, Middelbeek RJ, Townsend KL, Lee MY, Takahashi H, So K, Hitchcox KM, Markan KR, Hellbach K, Hirshman MF, Tseng YH. A novel role for subcutaneous adipose tissue in exercise-induced improvements in glucose homeostasis. Diabetes. 2015;64(6):2002-14.
  • 47. Sutherland LN, Bomhof MR, Capozzi LC, Basaraba SA, Wright DC. Exercise and adrenaline increase PGC‐1α mRNA expression in rat adipose tissue. The Journal of physiology 2009;587(7):1607-17.
  • 48. Cao L, Choi EY, Liu X, Martin A, Wang C, Xu X, During MJ. White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic-adipocyte axis. Cell metabolism 2011;14(3):324-38.
  • 49. De Matteis R, Lucertini F, Guescini M, Polidori E, Zeppa S, Stocchi V, Cinti S, Cuppini R. Exercise as a new physiological stimulus for brown adipose tissue activity. Nutrition, Metabolism and Cardiovascular Diseases 2013;23(6):582-90.
  • 50. Cannon B, Nedergaard JA. Brown adipose tissue: function and physiological significance. Physiological reviews 2004;84(1):277-359.
  • 51. Segawa M, Oh-Ishi S, Kizaki T, Ookawara T, Sakurai T, Izawa T, Nagasawa J, Kawada T, Fushiki T, Ohno H. Effect of running training on brown adipose tissue activity in rats: a reevaluation. Research communications in molecular pathology and pharmacology 1998;100(1):77-82.
  • 52. Shibata H, Nagasaka T. The effect of forced running on heat production in brown adipose tissue in rats. Physiology & behavior 1987;39(3):377-80.
  • 53. Wickler SJ, Stern JS, Glick Z, Horwitz BA. Thermogenic capacity and brown fat in rats exercise-trained by running. Metabolism 1987;36(1):76-81.
  • 54. Sanchez-Delgado G, Martinez-Tellez B, Olza J, Aguilera CM, Gil A, Ruiz JR. Role of exercise in the activation of brown adipose tissue. Annals of Nutrition and Metabolism 2015;67(1):21-32.
Konular Sağlık Bilimleri ve Hizmetleri
Dergi Bölümü Derlemeler
Yazarlar

Yazar: Meltem Mermer
Kurum: GAZI UNIV
Ülke: Turkey


Yazar: Nilüfer Acar Tek
Kurum: Dışkapı Yıldırım Beyazıt Eğitim ve Araştırma Hastanesi, Acil Kliniği
Ülke: Turkey


Bibtex @derleme { sdusbed292229, journal = {SDÜ Sağlık Bilimleri Dergisi}, issn = {2146-1937}, eissn = {2146-247X}, address = {Süleyman Demirel Üniversitesi}, year = {2017}, volume = {8}, pages = {40 - 46}, doi = {10.22312/sdusbed.292229}, title = {Adipoz doku ve enerji metabolizması üzerine etkileri}, key = {cite}, author = {Acar Tek, Nilüfer and Mermer, Meltem} }
APA Mermer, M , Acar Tek, N . (2017). Adipoz doku ve enerji metabolizması üzerine etkileri. SDÜ Sağlık Bilimleri Dergisi, 8 (3), 40-46. DOI: 10.22312/sdusbed.292229
MLA Mermer, M , Acar Tek, N . "Adipoz doku ve enerji metabolizması üzerine etkileri". SDÜ Sağlık Bilimleri Dergisi 8 (2017): 40-46 <http://dergipark.gov.tr/sdusbed/issue/33942/292229>
Chicago Mermer, M , Acar Tek, N . "Adipoz doku ve enerji metabolizması üzerine etkileri". SDÜ Sağlık Bilimleri Dergisi 8 (2017): 40-46
RIS TY - JOUR T1 - Adipoz doku ve enerji metabolizması üzerine etkileri AU - Meltem Mermer , Nilüfer Acar Tek Y1 - 2017 PY - 2017 N1 - doi: 10.22312/sdusbed.292229 DO - 10.22312/sdusbed.292229 T2 - SDÜ Sağlık Bilimleri Dergisi JF - Journal JO - JOR SP - 40 EP - 46 VL - 8 IS - 3 SN - 2146-1937-2146-247X M3 - doi: 10.22312/sdusbed.292229 UR - http://dx.doi.org/10.22312/sdusbed.292229 Y2 - 2017 ER -
EndNote %0 SDÜ Sağlık Bilimleri Dergisi Adipoz doku ve enerji metabolizması üzerine etkileri %A Meltem Mermer , Nilüfer Acar Tek %T Adipoz doku ve enerji metabolizması üzerine etkileri %D 2017 %J SDÜ Sağlık Bilimleri Dergisi %P 2146-1937-2146-247X %V 8 %N 3 %R doi: 10.22312/sdusbed.292229 %U 10.22312/sdusbed.292229
ISNAD Mermer, Meltem , Acar Tek, Nilüfer . "Adipoz doku ve enerji metabolizması üzerine etkileri". SDÜ Sağlık Bilimleri Dergisi 8 / 3 (Aralık 2017): 40-46. http://dx.doi.org/10.22312/sdusbed.292229