Yıl 2018, Cilt 4, Sayı 1, Sayfalar 10 - 20 2018-06-30

SOSYAL BOT ALGILAMA TEKNİKLERİ VE ARAŞTIRMA YÖNLERİ ÜZERİNE BİR İNCELEME

REVIEW ON SOCIAL BOT DETECTION TECHNIQUES AND RESEARCH DIRECTIONS

Arzum Karataş [1] , Serap Şahin [2]

93 114

Facebook, Twitter, LinkedIn gibi çevrimiçi sosyal ağların (OSN) popülerliği ve web servislerinin yaygınlığı, bu alanlarda sosyal bot olarak nitelendirdiğimiz yazılımsal sosyal aktörlerin ortaya çıkmasına ve yaygınlaşmasına neden oldu. Ancak çoğunlukla bu aktörler kötü rollerde karşımıza çıkmaktadırlar.  Örneğin, sosyal botlar insanmış gibi sohbetlere katılma, başka hesapları çalarak üzerinden dolandırıcılık yapma, yanlış bilgi yayma, borsayı manipüle etme, sahte halk tabakası oluşturarak propaganda yapma gibi ciddi problemlerde karşımıza çıkmaktadırlar. Bununla beraber, istenmeyen postaları ve zararlı yazılımları yaymanın en etkin araçları haline gelmişlerdir. Dahası, botlar gerçek hesapları ele geçirerek “zombi bilgisayar ağı” (botnet attack) saldırıları düzenlemekte de kullanılabiliyorlar. Öte yandan, sosyal botların sosyal paylaşım ağları üzerindeki yaygınlığı ve önemi inkâr edilemez bir gerçektir. Bu çalışmada, kötü niyetli sosyal botların potansiyel tehlikeleri vurgulanmıştır. Sonrasında, metodolojik bir sınıflandırma içerisinde literatürdeki bot tespit yaklaşımları, bu yaklaşımların sınırları ve açık problemleri gözden geçirilmiştir. Makalenin son bölümünde, problemi çözmeye yönelik iki yeni yaklaşım önerilmiştir.


Sosyal botlar, sosyal ağlar, çevrim içi ağlar, sosyal bot algılama, sybil hesapları
  • [1] S. K. Dehade and A. M. Bagade, "A review on detecting automation on Twitter accounts," Eur. J. Adv. Eng. Technol, vol. 2, pp. 69-72, 2015.
  • [2] Z. Chu, S. Gianvecchio, H. Wang, and S. Jajodia, "Detecting automation of twitter accounts: Are you a human, bot, or cyborg?," IEEE Transactions on Dependable and Secure Computing, vol. 9, pp. 811-824, 2012.
  • [3] V. Subrahmanian, A. Azaria, S. Durst, V. Kagan, A. Galstyan, K. Lerman, et al., "The darpa twitter bot challenge," arXiv preprint arXiv:1601.05140, 2016.
  • [4] (2016, September 12). Wikipedia:Creating a bot. Available: https://en.wikipedia.org/wiki/Wikipedia:Creating_a_bot
  • [5] E. Ferrera, "The Rise of Social Bots," 2016, Available: https://vimeo.com/166538072.
  • [6] C. Freitas, F. Benevenuto, S. Ghosh, and A. Veloso, "Reverse engineering socialbot infiltration strategies in twitter," in Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, 2015, pp. 25-32.
  • [7] D. Mail, "Syrian Electronic Army linked to hack attack on AP Twitter feed that 'broke news' Obama had been injured in White House blast and sent Dow Jones plunging," 2013, Available: http://www.dailymail.co.uk/news/article-2314001/Syrian-Electronic-Army-linked-hack-attack-AP-Twitter-feed-broke-news-Obama-injured-White-House-blast-sent-Dow-Jones-plunging.html
  • [8] A. Bienkov, "Astroturfing: what is it and why does it matter?," in The Guardian, ed, 2012.
  • [9] J. Ratkiewicz, M. Conover, M. Meiss, B. Gonçalves, A. Flammini, and F. Menczer, "Detecting and Tracking Political Abuse in Social Media," ICWSM, vol. 11, pp. 297-304, 2011.
  • [10] Y. Boshmaf, I. Muslukhov, K. Beznosov, and M. Ripeanu, "The socialbot network: when bots socialize for fame and money," in Proceedings of the 27th Annual Computer Security Applications Conference, 2011, pp. 93-102.
  • [11] B. Schreckinger. (2016, September 30,2016) Inside Trump's 'cyborg' Twitter army. Available: http://www.politico.com/story/2016/09/donald-trump-twitter-army-228923
  • [12] O. Goga, G. Venkatadri, and K. P. Gummadi, "The doppelgänger bot attack: Exploring identity impersonation in online social networks," in Proceedings of the 2015 ACM Conference on Internet Measurement Conference, 2015, pp. 141-153.
  • [13] Abokhodair, N., Yoo, D., & McDonald, D. W. (2015, February). Dissecting a social botnet: Growth, content and influence in Twitter. In Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing (pp. 839-851). ACM.
  • [14] Sybil attack. Available: https://en.wikipedia.org/wiki/Sybil_attack
  • [15] P. Gao, N. Z. Gong, S. Kulkarni, K. Thomas, and P. Mittal, "Sybilframe: A defense-in-depth framework for structure-based sybil detection," arXiv preprint arXiv:1503.02985, 2015.
  • [16] D. Mulamba, I. Ray, and I. Ray, "SybilRadar: A Graph-Structure Based Framework for Sybil Detection in On-line Social Networks," in IFIP International Information Security and Privacy Conference, 2016, pp. 179-193.
  • [17] N. Z. Gong, M. Frank, and P. Mittal, "Sybilbelief: A semi-supervised learning approach for structure-based sybil detection," IEEE Transactions on Information Forensics and Security, vol. 9, pp. 976-987, 2014.
  • [18] J. Parsons. (2015, September 12). Facebook’s War Continues Against Fake Profiles and Bots. Available: http://www.huffingtonpost.com/james-parsons/facebooks-war-continues-against-fake-profiles-and-bots_b_6914282.html
  • [19] K. Pearson, "The problem of the random walk," Nature, vol. 72, p. 294, 1905.
  • [20] B. Carminati, E. Ferrari, and M. Viviani, "Security and trust in online social networks," Synthesis Lectures on Information Security, Privacy, & Trust, vol. 4, pp. 1-120, 2013.
  • [21] G. Danezis and P. Mittal, "SybilInfer: Detecting Sybil Nodes using Social Networks," in NDSS, 2009.
  • [22] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman, "Sybilguard: defending against sybil attacks via social networks," in ACM SIGCOMM Computer Communication Review, 2006, pp. 267-278.
  • [23] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao, "Sybillimit: A near-optimal social network defense against sybil attacks," in 2008 IEEE Symposium on Security and Privacy (sp 2008), 2008, pp. 3-17.
  • [24] Q. Cao, M. Sirivianos, X. Yang, and T. Pregueiro. (2016). SybilRank. Available: http://www.tid.es/research/areas/sybil-rank
  • [25] G. R. Cross and A. K. Jain, "Markov random field texture models," IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 25-39, 1983.
  • [26] K. P. Murphy, Y. Weiss, and M. I. Jordan, "Loopy belief propagation for approximate inference: An empirical study," in Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence, 1999, pp. 467-475.
  • [27] A. Mohaisen, A. Yun, and Y. Kim, "Measuring the mixing time of social graphs," in Proceedings of the 10th ACM SIGCOMM conference on Internet measurement, 2010, pp. 383-389.
  • [28] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, "Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters," Internet Mathematics, vol. 6, pp. 29-123, 2009.
  • [29] B. Viswanath, A. Post, K. P. Gummadi, and A. Mislove, "An analysis of social network-based sybil defenses," ACM SIGCOMM Computer Communication Review, vol. 40, pp. 363-374, 2010.
  • [30] Y. Boshmaf, K. Beznosov, and M. Ripeanu, "Graph-based sybil detection in social and information systems," in Advances in Social Networks Analysis and Mining (ASONAM), 2013 IEEE/ACM International Conference on, 2013, pp. 466-473.
  • [31] Y. Xie, F. Yu, Q. Ke, M. Abadi, E. Gillum, K. Vitaldevaria, et al., "Innocent by association: early recognition of legitimate users," in Proceedings of the 2012 ACM conference on Computer and communications security, 2012, pp. 353-364.
  • [32] J. Jiang, C. Wilson, X. Wang, W. Sha, P. Huang, Y. Dai, et al., "Understanding latent interactions in online social networks," ACM Transactions on the Web (TWEB), vol. 7, p. 18, 2013.
  • [33] Z. Yang, C. Wilson, X. Wang, T. Gao, B. Y. Zhao, and Y. Dai, "Uncovering social network sybils in the wild," ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 8, p. 2, 2014.
  • [34] G. Wang, M. Mohanlal, C. Wilson, X. Wang, M. Metzger, H. Zheng, et al., "Social turing tests: Crowdsourcing sybil detection," arXiv preprint arXiv:1205.3856, 2012.
  • [35] (2016). Overview of Mechanical Turk. Available: http://docs.aws.amazon.com/AWSMechTurk/latest/RequesterUI/OverviewofMturk.html
  • [36] K. Lee, B. D. Eoff, and J. Caverlee, "Seven Months with the Devils: A Long-Term Study of Content Polluters on Twitter," in ICWSM, 2011.
  • [37] J. P. Dickerson, V. Kagan, and V. Subrahmanian, "Using sentiment to detect bots on Twitter: Are humans more opinionated than bots?," in Advances in Social Networks Analysis and Mining (ASONAM), 2014 IEEE/ACM International Conference on, 2014, pp. 620-627.
  • [38] C. A. Davis, O. Varol, E. Ferrara, A. Flammini, and F. Menczer, "Botornot: A system to evaluate social bots," in Proceedings of the 25th International Conference Companion on World Wide Web, 2016, pp. 273-274.
  • [39] O. Varol, E. Ferrara, C. A. Davis, F. Menczer, and A. Flammini, "Online human-bot interactions: Detection, estimation, and characterization," arXiv preprint arXiv:1703.03107, 2017.
Birincil Dil tr
Konular Mühendislik
Dergi Bölümü Makaleler
Yazarlar

Yazar: Arzum Karataş
Kurum: İZMİR YÜKSEK TEKNOLOJİ ENSTİTÜSÜ
Ülke: Turkey


Yazar: Serap Şahin
Kurum: İZMİR YÜKSEK TEKNOLOJİ ENSTİTÜSÜ
Ülke: Turkey


Bibtex @araştırma makalesi { ubgmd348517, journal = {ULUSLARARASI BİLGİ GÜVENLİĞİ MÜHENDİSLİĞİ DERGİSİ}, issn = {}, eissn = {2528-9993}, address = {Gazi Üniversitesi}, year = {2018}, volume = {4}, pages = {10 - 20}, doi = {10.18640/ubgmd.348517}, title = {SOSYAL BOT ALGILAMA TEKNİKLERİ VE ARAŞTIRMA YÖNLERİ ÜZERİNE BİR İNCELEME}, key = {cite}, author = {Şahin, Serap and Karataş, Arzum} }
APA Karataş, A , Şahin, S . (2018). SOSYAL BOT ALGILAMA TEKNİKLERİ VE ARAŞTIRMA YÖNLERİ ÜZERİNE BİR İNCELEME. ULUSLARARASI BİLGİ GÜVENLİĞİ MÜHENDİSLİĞİ DERGİSİ, 4 (1), 10-20. DOI: 10.18640/ubgmd.348517
MLA Karataş, A , Şahin, S . "SOSYAL BOT ALGILAMA TEKNİKLERİ VE ARAŞTIRMA YÖNLERİ ÜZERİNE BİR İNCELEME". ULUSLARARASI BİLGİ GÜVENLİĞİ MÜHENDİSLİĞİ DERGİSİ 4 (2018): 10-20 <http://dergipark.gov.tr/ubgmd/issue/33962/348517>
Chicago Karataş, A , Şahin, S . "SOSYAL BOT ALGILAMA TEKNİKLERİ VE ARAŞTIRMA YÖNLERİ ÜZERİNE BİR İNCELEME". ULUSLARARASI BİLGİ GÜVENLİĞİ MÜHENDİSLİĞİ DERGİSİ 4 (2018): 10-20
RIS TY - JOUR T1 - SOSYAL BOT ALGILAMA TEKNİKLERİ VE ARAŞTIRMA YÖNLERİ ÜZERİNE BİR İNCELEME AU - Arzum Karataş , Serap Şahin Y1 - 2018 PY - 2018 N1 - doi: 10.18640/ubgmd.348517 DO - 10.18640/ubgmd.348517 T2 - ULUSLARARASI BİLGİ GÜVENLİĞİ MÜHENDİSLİĞİ DERGİSİ JF - Journal JO - JOR SP - 10 EP - 20 VL - 4 IS - 1 SN - -2528-9993 M3 - doi: 10.18640/ubgmd.348517 UR - http://dx.doi.org/10.18640/ubgmd.348517 Y2 - 2018 ER -
EndNote %0 ULUSLARARASI BİLGİ GÜVENLİĞİ MÜHENDİSLİĞİ DERGİSİ SOSYAL BOT ALGILAMA TEKNİKLERİ VE ARAŞTIRMA YÖNLERİ ÜZERİNE BİR İNCELEME %A Arzum Karataş , Serap Şahin %T SOSYAL BOT ALGILAMA TEKNİKLERİ VE ARAŞTIRMA YÖNLERİ ÜZERİNE BİR İNCELEME %D 2018 %J ULUSLARARASI BİLGİ GÜVENLİĞİ MÜHENDİSLİĞİ DERGİSİ %P -2528-9993 %V 4 %N 1 %R doi: 10.18640/ubgmd.348517 %U 10.18640/ubgmd.348517
ISNAD Karataş, Arzum , Şahin, Serap . "SOSYAL BOT ALGILAMA TEKNİKLERİ VE ARAŞTIRMA YÖNLERİ ÜZERİNE BİR İNCELEME". ULUSLARARASI BİLGİ GÜVENLİĞİ MÜHENDİSLİĞİ DERGİSİ 4 / 1 (Haziran 2018): 10-20. http://dx.doi.org/10.18640/ubgmd.348517