Yıl 2018, Cilt , Sayı , Sayfalar 239 - 252 2018-01-16

GEOMETRİK SÜREÇ VERİLERİ İÇİN GAMMA VE WEİBULL DAĞILIMLARI ARASINDAKİ AYRIM
DISCRIMINATING BETWEEN THE GAMMA AND WEIBULL DISTRIBUTIONS FOR GEOMETRIC PROCESS DATA

Cenker BİÇER [1] , Hayrinisa DEMİRCİ BİÇER [2]

165 232

Uygulamalarda gözlemlenen verilerin en uygun biçimde istatistiksel analizini yapmak için veri kümesinin altında yatan dağılım en uygun biçimde belirlenmelidir. Çoğu zaman, bir veri kümesinin altında yatan dağılımı belirlemeye çalışırken kullanılan uyum iyiliği testleri, veri seti için birden fazla dağılım modelini işaret eder. Uyum iyiliği testlerinin sonuçlarına göre olası dağılım modelleri arasında, veri kümesi için optimal dağılım modelinin belirlenmesi problemi, istatistikte oldukça önemli bir problemdir. Bu çalışmada, geometric süreç verileri için Gamma ve Weibull dağılımları arasındaki ayrım problemi, en çok olabilirlik oran yöntemine göre araştırılmıştır. Ayrımcılık için kullanılan yöntemin doğru seçim performansını göstermek için, kapsamlı bir simülasyon çalışması yapılmış ve belirli bir güven düzeyinde ve test gücünde ayrım yapmak için gerekli minimum örneklem büyüklükleri elde edilmiştir. Buna ek olarak, açıklayıcı amaçlarla, gerçek bir veri seti kullanılarak bir uygulama yapılmıştır.

To obtain an optimal statistical analysis of the data observed in the applications, the underlying distribution of the data set should be optimally determined. Most of times, the goodness-of-fit tests used when trying to determine the underlying distribution of a data set indicate more than one distribution model to data set. Among the possible distribution models according to the results of the goodness-of-fit tests, the problem of determination of the optimal distribution model for the data set is quite important problem in statistic. In this study, the problem of discriminating between the Gamma and Weibull distributions for geometric process data is investigated according to the ratio of maximum likelihood method. To show the correct selection performance of the method used for discrimination, a comprehensive simulation study is performed and in order to discriminating at fixed level of confidence and power of test, required minimum sample sizes are obtained. In addition, for illustrative purposes, an application is made by using a real data set.

  • Ascher H. ve Feingold, H. (1984). Repairable systems reliability. New York: Marcel Dekker.
  • Aydoğdu, H., Şenoğlu, B. ve Kara, M. (2010). Parameter estimation in geometric process with We-ibull distribution. Applied Mathematics and Computation, 217(6), 2657-2665.
  • Bain, L. J. ve Engelhardt, M. (1980). Probability of correct selection of weibull versus gamma based on livelihood ratio. Communications in statistics-theory and methods, 9(4), 375-381.
  • Chan, J. S., Lam, Y. ve Leung, D. Y. (2004). Statistical inference for geometric processes with gamma distributions. Computational statistics & data analysis, 47(3), 565-581.
  • Dey, A. K. ve Kundu, D. (2012). Discriminating between the Weibull and log-normal distributions for Type-II censored data. Statistics, 46(2), 197-214.
  • Elsherpieny, E. A., Ibrahim, N. S. ve Radwan, N. U. (2013). Discriminating between Weibull and log-logistic distributions. International Journal of Innovative Research in Science, Engineering and Technology, 2(8), 3358-3371.
  • Fearn, D. H. ve Nebenzahl, E. (1991). On the maximum likelihood ratio method of deciding between the Weibull and Gamma distributions. Communications in Statistics-Theory and Methods, 20(2), 579-593.
  • Kara, M., Aydoğdu, H. ve Türkşen, Ö. (2015). Statistical inference for geometric process with the inverse Gaussian distribution. Journal of Statistical Computation and Simulation, 85(16), 3206-3215.
  • Kundu, D. ve Manglick, A. (2005). Discriminating between the log-normal and gamma distributions. Journal of the Applied Statistical Sciences, 14, 175-187.
  • Kundu, D. ve Manglick, A. (2004). Discriminating between the Weibull and log‐normal distributions Naval Research Logistics (NRL), 51(6), 893-905.
  • Kundu, D., Gupta, R. D., ve Manglick, A. (2005). Discriminating between the log-normal and genera-lized exponential distributions. Journal of Statistical Planning and Inference, 127(1), 213-227.
  • Kundu, D. ve Raqab, M. Z. (2007). Discriminating between the generalized Rayleigh and log-normal distribution. Statistics, 41(6), 505-515.
  • Lam, Y. (1988). Geometric processes and replacement problem. Acta Mathematicae Applicatae Sinica, 4, 366-377.
  • Lam, Y. (2007). The Geometric Process and Its Applications. Singapore: World Scientific.
  • Lam, Y. ve Chan, S. K. (1998). Statistical inference for geometric processes with lognormal distribu-tion. Computational statistics & data analysis, 27(1), 99-112.
  • Raqab, M. Z. (2013). Discriminating between the generalized Rayleigh and Weibull distributions. Journal of Applied Statistics, 40(7), 1480-1493.
Konular Sosyal
Dergi Bölümü MAKALELER
Yazarlar

Yazar: Cenker BİÇER
Kurum: KIRIKKALE ÜNİVERSİTESİ, FEN-EDEBİYAT FAKÜLTESİ, İSTATİSTİK BÖLÜMÜ
Ülke: Turkey


Yazar: Hayrinisa DEMİRCİ BİÇER
Kurum: KIRIKKALE ÜNİVERSİTESİ, FEN-EDEBİYAT FAKÜLTESİ, İSTATİSTİK BÖLÜMÜ
Ülke: Turkey


Bibtex @araştırma makalesi { ulikidince353659, journal = {Uluslararası İktisadi ve İdari İncelemeler Dergisi}, issn = {1307-9832}, eissn = {1307-9859}, address = {Kenan ÇELİK}, year = {2018}, volume = {}, pages = {239 - 252}, doi = {10.18092/ulikidince.353659}, title = {GEOMETRİK SÜREÇ VERİLERİ İÇİN GAMMA VE WEİBULL DAĞILIMLARI ARASINDAKİ AYRIM}, key = {cite}, author = {BİÇER, Cenker and DEMİRCİ BİÇER, Hayrinisa} }
APA BİÇER, C , DEMİRCİ BİÇER, H . (2018). GEOMETRİK SÜREÇ VERİLERİ İÇİN GAMMA VE WEİBULL DAĞILIMLARI ARASINDAKİ AYRIM. Uluslararası İktisadi ve İdari İncelemeler Dergisi, (), 239-252. DOI: 10.18092/ulikidince.353659
MLA BİÇER, C , DEMİRCİ BİÇER, H . "GEOMETRİK SÜREÇ VERİLERİ İÇİN GAMMA VE WEİBULL DAĞILIMLARI ARASINDAKİ AYRIM". Uluslararası İktisadi ve İdari İncelemeler Dergisi (2018): 239-252 <http://dergipark.gov.tr/ulikidince/issue/34379/353659>
Chicago BİÇER, C , DEMİRCİ BİÇER, H . "GEOMETRİK SÜREÇ VERİLERİ İÇİN GAMMA VE WEİBULL DAĞILIMLARI ARASINDAKİ AYRIM". Uluslararası İktisadi ve İdari İncelemeler Dergisi (2018): 239-252
RIS TY - JOUR T1 - GEOMETRİK SÜREÇ VERİLERİ İÇİN GAMMA VE WEİBULL DAĞILIMLARI ARASINDAKİ AYRIM AU - Cenker BİÇER , Hayrinisa DEMİRCİ BİÇER Y1 - 2018 PY - 2018 N1 - doi: 10.18092/ulikidince.353659 DO - 10.18092/ulikidince.353659 T2 - Uluslararası İktisadi ve İdari İncelemeler Dergisi JF - Journal JO - JOR SP - 239 EP - 252 VL - IS - SN - 1307-9832-1307-9859 M3 - doi: 10.18092/ulikidince.353659 UR - http://dx.doi.org/10.18092/ulikidince.353659 Y2 - 2018 ER -
EndNote %0 Uluslararası İktisadi ve İdari İncelemeler Dergisi GEOMETRİK SÜREÇ VERİLERİ İÇİN GAMMA VE WEİBULL DAĞILIMLARI ARASINDAKİ AYRIM %A Cenker BİÇER , Hayrinisa DEMİRCİ BİÇER %T GEOMETRİK SÜREÇ VERİLERİ İÇİN GAMMA VE WEİBULL DAĞILIMLARI ARASINDAKİ AYRIM %D 2018 %J Uluslararası İktisadi ve İdari İncelemeler Dergisi %P 1307-9832-1307-9859 %V %N %R doi: 10.18092/ulikidince.353659 %U 10.18092/ulikidince.353659
ISNAD BİÇER, Cenker , DEMİRCİ BİÇER, Hayrinisa . "GEOMETRİK SÜREÇ VERİLERİ İÇİN GAMMA VE WEİBULL DAĞILIMLARI ARASINDAKİ AYRIM". Uluslararası İktisadi ve İdari İncelemeler Dergisi / (Ocak 2018): 239-252. http://dx.doi.org/10.18092/ulikidince.353659