Yıl 2017, Cilt 9, Sayı 3, Sayfalar 162 - 173 2017-12-26

Maximum Power Point Tracking in Solar Power Systems by Using Differential Evolution Methods with Embedded Systems

VOLKAN YAMAÇLI [1] , KADİR ABACI [2]

93 74

In this paper, one of the most important problems, Maximum Power Point Tracking (MPPT), in renewable solar power is studied and analyzed. In order to obtain the maximum power point in solar cells and panels the voltage and current should be maximized, simultaneously. Thus, the easiest way to achieve the maximum power point is tracking the solar energy, daylight, by measuring the light intensity in a solar cell or panel coaxially. In this work, the MPPT is achieved by optimizing the light intensity vector on a solar panel after measuring the daylight physically with the help of newly designed embedded system, and processing the real world values by using Differential Search Algorithm which is a new and improved method based on differential evolutionary principles.

Solar Power, Maximum Power Point Tracking, Renewable Energy, Differential Search
  • [1] Abaci, K., Yamacli, V., Akdagli, A. (2016). Optimal power flow with svc devices by using the artifcial bee colony algorithm. Turkish Journal of Electrical Engineering & Computer Sciences, 24, 341-353.
  • [2] Belarbi, M., Boudghene, A., Belarbi, E.H., Haddouche, K. (2016). A new algorithm of parameter estimation of a photovoltaic solar panel. Turkish Journal of Electrical Engineering & Computer Sciences, 24, 276-284.
  • [3] Siddiqui, M.U., Abido, M. (2013). Parameter optimization for five- and seven-parameter photovoltaic electrical models using evolutionary algorithms. Applied Soft Computing, 13(12), 4608-4621.
  • [4] De Brito, M.A.G., Galotto, L., Sampaio, L.P., de Azevedo e Melo, G., Canesin, C.A. (2013). Evaluation of the main MPPT techniques for photovoltaic applications. IEEE Transactions on Industrial Electronics. 60(3), 1156–1167.
  • [5] Zhiqiang Gao, Song L., Xuesong Z., Youjie M., Jian Z. (2017). A new maximum power point tracking method for pv system. 29th Chinese Control And Decision Conference Proceedings, 544–548.
  • [6] Marion B., Rummel S., Anderberg A. (2004). Current–voltage curve translation by bilinear interpolation. Progress in Photovoltaics, 12, 593–607.
  • [7] King, D.L., Boyson W.E., Kratochvil J.A. (2004). Photovoltaic array performance model. Sandia National Laboratories, Albuquerque, NM.
  • [8] Townsend, T.U. (1989). A method for predicting the long-term performance of directly-coupled photovoltaic systems, MSc thesis, University of Wisconsin, Madison.
  • [9] Duffie, J.A., & Beckman, W.A. (1991). Solar engineering of thermal processes (2nd ed.). New York, John Wiley & Sons.
  • [10] Desoto, W., Klein, S.A., Beckman, W.A. (2006). Improvement and validation of a model for photovoltaic array performance. Solar Energy, 80, 78–88.
  • [11] Valerio, L.B., Orioli, A., Ciulla, G., Di Gangi, A. (2010). An improved five-parameter model for photovoltaic modules. Solar Energy Materials and Solar Cells, 94(8), 1358–1370.
  • [12] Boyd, M.T., Klein, S.A., Reindl, D.T., Dougherty, B.P. (2011). Evaluation and validation of equivalent circuit photovoltaic solar cell performance models. Journal of Solar Energy Engineering, 133(2), 1-13.
  • [13] Villalva, M.G., Gazoli, J.R., Filho, E.R. (2009). Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Transactions On Power Electronics. 24(5), 1198–1208.
  • [14] Carrero, C., Ramírez, D., Rodríguez, J. Platero, C.A. (2016). Accurate and fast convergence method for parameter estimation of pv generators based on three main points of the I-V curve. Renewable Energy, 36(11), 2972–2977.
  • [15] Ikegami, T., Maezono, T., Nakanishi, F., Yamagata, Y., Ebihara K. (2001). Estimation of equivalent circuit parameters of pv module and its application to optimal operation of pv system. Solar Energy Materials and Solar Cells, 67, 389–395.
  • [16] Siddiqui, M.U. (2011). Multiphysics modeling of photovoltaic panels and arrays with auxiliary thermal collectors, MSc Thesis, King Fahd University of Petroleum & Minerals, Saudi Arabia.
  • [17] Chen C.W. (2001). A fuzzy ahp-based fault diagnosis for semiconductor lithography process", International Journal of Innovative Computing. Information and Control, 7(2), 805–816.
  • [18] Chen C.W. (2001). Fuzzy control of interconnected structural systems using the fuzzy Lyapunov method. Journal of Vibration and Control, 17(11), 1693–1702.
  • [19] Lin M.L. (2010). Application of fuzzy models for the monitoring of ecologically sensitive ecosystems in a dynamic semi-arid landscape from satellite imagery. Engineering Computations, 27(1), 5–19.
  • [20] Chen C.W. (2010). GA-based adaptive neural network controllers for nonlinear systems. International Journal of Innovative Computing, 6(4), 1793–1803.
  • [21] Chen C.W. (2011). Stabilization of adaptive neural network controllers for nonlinear structural systems using a singular perturbation approach. Journal of Vibration and Control, 17(8), 1241–1252.
  • [22] Moldovan, N., Picos, R., Garcia-Moreno, E. (2009). Parameter extraction of a solar cell compact model using genetic algorithms. Spanish Conference on Electron Devices Proceedings, 379–382.
  • [23] Civicioglu P. (2012). Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm. Computers & Geosciences, 46, 229-247.
  • [24] Gray, J.L. (2011). The physics of the solar cell, in handbook of photovoltaic science and engineering. New York, John Wiley & Sons.
  • [25] Abaci, K., Yamacli, V. (2016). Differential search algorithm for solving multi-objective optimal power flow problem. International Journal of Electrical Power & Energy Systems, 79, 1-10.
Konular Mühendislik (Genel)
Dergi Bölümü Makaleler
Yazarlar

Yazar: VOLKAN YAMAÇLI
E-posta: vyamacli@mersin.edu.tr
Kurum: Mersin Üniversitesi
Ülke: Turkey


Yazar: KADİR ABACI
E-posta: kabaci@mersin.edu.tr
Kurum: Mersin Üniversitesi
Ülke: Turkey


Bibtex @araştırma makalesi { umagd348004, journal = {Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi}, issn = {}, address = {Kırıkkale Üniversitesi}, year = {2017}, volume = {9}, pages = {162 - 173}, doi = {10.29137/umagd.348004}, title = {Maximum Power Point Tracking in Solar Power Systems by Using Differential Evolution Methods with Embedded Systems}, key = {cite}, author = {YAMAÇLI, VOLKAN and ABACI, KADİR} }
APA YAMAÇLI, V , ABACI, K . (2017). Maximum Power Point Tracking in Solar Power Systems by Using Differential Evolution Methods with Embedded Systems. Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, 9 (3), 162-173. DOI: 10.29137/umagd.348004
MLA YAMAÇLI, V , ABACI, K . "Maximum Power Point Tracking in Solar Power Systems by Using Differential Evolution Methods with Embedded Systems". Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi 9 (2017): 162-173 <http://dergipark.gov.tr/umagd/issue/33339/348004>
Chicago YAMAÇLI, V , ABACI, K . "Maximum Power Point Tracking in Solar Power Systems by Using Differential Evolution Methods with Embedded Systems". Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi 9 (2017): 162-173
RIS TY - JOUR T1 - Maximum Power Point Tracking in Solar Power Systems by Using Differential Evolution Methods with Embedded Systems AU - VOLKAN YAMAÇLI , KADİR ABACI Y1 - 2017 PY - 2017 N1 - doi: 10.29137/umagd.348004 DO - 10.29137/umagd.348004 T2 - Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi JF - Journal JO - JOR SP - 162 EP - 173 VL - 9 IS - 3 SN - -1308-5514 M3 - doi: 10.29137/umagd.348004 UR - http://dx.doi.org/10.29137/umagd.348004 Y2 - 2017 ER -
EndNote %0 Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi Maximum Power Point Tracking in Solar Power Systems by Using Differential Evolution Methods with Embedded Systems %A VOLKAN YAMAÇLI , KADİR ABACI %T Maximum Power Point Tracking in Solar Power Systems by Using Differential Evolution Methods with Embedded Systems %D 2017 %J Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi %P -1308-5514 %V 9 %N 3 %R doi: 10.29137/umagd.348004 %U 10.29137/umagd.348004