| | | |

## Modelling the PV System In Order To Obtain Energy Producing Capacity Using Actual System Parameters, Irradiation and Weather Temperature

#### Hatice OKUMUŞ [1] , Fatih M. NUROĞLU [2]

##### 96 129

An electrical energy generation model of a photovoltaic (PV) system is proposed in MATLAB/Simulink environment. This system includes; PV panel, a maximum power point tracker (MPPT), battery system, DC-DC Boost Converter and DC-DC Buck Converter. The PV panel input parameters are ones which can be easily maintained from any PV panel datasheet and this makes the model very useful in the application area. The temperature and irradiation effects are included in the modulation. For the accuracy of the system, real time measurement results and simulation results are compared. The obtained results are satisfying.

Photovoltaic panel, dc-dc boost converter, dc-dc buck converter, maximum power point tracker, modelling
• Alagöz, B. B., Keleş, C., Kaygusuz, A., Kaplan, Y. (2013). Karabiber A. Hiyerarşik Kontrol ile Güç Regülasyonlu DC/DC Sürücü Tasarımı. In: Otomatik Kontrol Ulusal Toplantısı ve Sergisi (TOK'13), 2-7. Alonso-Garcia, M. C., Ruiz, J. M., & Chenlo, F. (2006). Experimental study of mismatch and shading effects in the I–V characteristic of a photovoltaic module. Solar Energy Materials and Solar Cells, 90(3), 329-340. Altas, I. H., & Sharaf, A. M. (1992). A fuzzy logic power tracking controller for a photovoltaic energy conversion scheme. Electric Power Systems Research, 25(3), 227-238. Altaş, İ. H. & Mengi, O. Ö (2008). AA ve DA Yüklerini Beslenen FV/Akü Grubunun Matlab/Simulink Ortamında Modellenmesi ve Simülasyonu. Elektrik- Elektronik ve Bilgisayar Mühendisliği Sempozyumu (ELECO),135-139. Benghanem, M. S., & Alamri, S. N. (2009). Modeling of photovoltaic module and experimental determination of serial resistance. Journal of Taibah University for science, 2, 94-105. Bryant, F. J., & Glew, R. W. (1975). Analysis of the current-voltage characteristics of cadmium sulphide solar cells under varying light intensities. Energy Conversion, 14(3), 129-133. Chatterjee, A., Keyhani, A., & Kapoor, D. (2011). Identification of photovoltaic source models. IEEE Transactions on Energy conversion, 26(3), 883-889. Davoudi, A., Jatskevich, J., & Rybel, T. D. (2006). Numerical state-space average-value modeling of PWM DC-DC converters operating in DCM and CCM. IEEE Transactions on power electronics, 21(4), 1003-1012 De Soto, W., Klein, S. A., & Beckman, W. A. (2006). Improvement and validation of a model for photovoltaic array performance. Solar energy, 80(1), 78-88. Duman, S., Yörükören, N., & Altaş, İ. H. (2014). Fotovoltaik Enerji SistemlerininModellenmesi, Benzetimi ve Uygulaması. İleri Teknoloji Bilimleri Dergisi, 3(1), 9-23. Gow, J. A., & Manning, C. D. (1999). Development of a photovoltaic array model for use in power-electronics simulation studies. IEE Proceedings-Electric Power Applications, 146(2), 193-200. Houssamo, I., Locment, F., & Sechilariu, M. (2010). Maximum power tracking for photovoltaic power system: Development and experimental comparison of two algorithms. Renewable energy, 35(10), 2381-2387. Humada, A. M., Hojabri, M., Sulaiman, M. H. B., Hamada, H. M., & Ahmed, M. N. (2016). Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results. PloS one, 11(4), e0152766. Kaushika, N. D., & Gautam, N. K. (2003). Energy yield simulations of interconnected solar PV arrays. IEEE Transactions on Energy Conversion, 18(1), 127-134. Kim, S. K., Kim, E. S., & Ahn, J. B. (2006). Modeling and control of a grid-connected wind/PV hybrid generation system. In Transmission and Distribution Conference and Exhibition, pp. 1202-1207.
• Laudani, A., Fulginei, F. R., & Salvini, A. (2014). High performing extraction procedure for the one-diode model of a photovoltaic panel from experimental I–V curves by using reduced forms. Solar Energy, 103, 316-326. Li, Y., Huang, W., Huang, H., Hewitt, C., Chen, Y., Fang, G., & Carroll, D. L. (2013). Evaluation of methods to extract parameters from current–voltage characteristics of solar cells. Solar Energy, 90, 51-57. Locci, N., Mocci, F., & Tosi, M. (1986). A programmable simulator of photovoltaic generators. In Power Electronics Specialists Conference, 633-638. Messai, A., Mellit, A., Guessoum, A., & Kalogirou, S. A. (2011). Maximum power point tracking using a GA optimized fuzzy logic controller and its FPGA implementation. Solar energy, 85(2), 265-277. Mohan, N., Undeland, T. M., & Robbins, W. P. (1989). Güç Elektroniği Çeviriciler Uygulamalar Ve Tasarım (Çev: Nejat Tuncay, Metin Gökaşan, Seta Boğoysan). John Willey And Sons Publication, 874p., USA. Natsheh, E. M., Blackhurs, E. J., & Albarbar, A. (2011). PV system monitoring and performance of a grid connected PV power station located in Manchester-UK In: IET Conference on Renewable Power Generation, 1-6. Nema, S., Nema, R. K., & Agnihotri, G. (2010). Matlab/simulink based study of photovoltaic cells/modules/array and their experimental verification. International journal of Energy and Environment, 1(3), 487-500. Okumuş,H. & Nuroğlu, F. M. (2016). Modeling and Simulation of PV Modules with Voltage Feedback in MATLAB/Simuink. In: Proceedings of 2016 International Conference on Image Processing, Production and Computer Science, 10-16. Park, M., Kim, B. T., & Yu, I. K. (2001). A study on the simulation scheme for utility interactive PV generation systems. In: International Symposium on Industrial Electronics, 13-18. Picciano, W. T. (1969). Determination of the solar cell equation parameters, including series resistance, from empirical data. Energy Conversion, 9(1), 1-6. Ramabadran, R., & Mathur, B. (2009). Matlab based modelling and performance study of series connected SPVA under partial shaded conditions. Journal of Sustainable development, 2(3), 85. Razykov, T. M., Ferekides, C. S., Morel, D., Stefanakos, E., Ullal, H. S., & Upadhyaya, H. M. (2011). Solar photovoltaic electricity: Current status and future prospects. Solar Energy, 85(8), 1580-1608. Salam, Z., Ishaque, K., & Taheri, H. (2010). An improved two-diode photovoltaic (PV) model for PV system. In International Conference on Power Electronics, Drives and Energy Systems (PEDES), 1–5. Sankarganesh, R., & Thangavel, S. (2012). Maximum power point tracking in PV system using intelligence based P&O technique and hybrid cuk converter. In: International Conference on Emerging Trends in Science, Engineering and Technology (INCOSET), 429-436. Sathya, P., & Natarajan, R. (2013). Design and implementation of 12V/24V closed loop boost converter for solar powered LED lighting system. International Journal of Engineering and Technology (IJET), 5(1), 254-264. Tsai, H. L. (2010). Insolation-oriented model of photovoltaic module using Matlab/Simulink. Solar Energy, 84(7), 1318-1326. Tsai, H. F., & Tsai, H. L. (2012). Implementation and verification of integrated thermal and electrical models for commercial PV modules. Solar Energy, 86(1), 654-665. Turcek, J., Hrasko, M., & Altus, J. (2011). Photovoltaics in present days and their coexistance with power system. Communications-scientific Letters of the University of Zilina, 2a/2011, 13, 109-113. Villalva, M. G., Gazoli, J. R., & Ruppert Filho, E. (2009). Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Transactions on power electronics, 24(5), 1198-1208. Walker, G. R., & Sernia, P. C. (2004). Cascaded DC-DC converter connection of photovoltaic modules. IEEE transactions on power electronics, 19(4), 1130-1139.
Birincil Dil en Makaleler Yazar: Hatice OKUMUŞ Yazar: Fatih M. NUROĞLU
 Bibtex @araştırma makalesi { umagd441734, journal = {International Journal of Engineering Research and Development}, issn = {}, eissn = {1308-5514}, address = {Kırıkkale Üniversitesi}, year = {2018}, volume = {10}, pages = {40 - 52}, doi = {10.29137/umagd.441734}, title = {Modelling the PV System In Order To Obtain Energy Producing Capacity Using Actual System Parameters, Irradiation and Weather Temperature}, key = {cite}, author = {OKUMUŞ, Hatice and NUROĞLU, Fatih M.} } APA OKUMUŞ, H , NUROĞLU, F . (2018). Modelling the PV System In Order To Obtain Energy Producing Capacity Using Actual System Parameters, Irradiation and Weather Temperature. International Journal of Engineering Research and Development, 10 (2), 40-52. DOI: 10.29137/umagd.441734 MLA OKUMUŞ, H , NUROĞLU, F . "Modelling the PV System In Order To Obtain Energy Producing Capacity Using Actual System Parameters, Irradiation and Weather Temperature". International Journal of Engineering Research and Development 10 (2018): 40-52 Chicago OKUMUŞ, H , NUROĞLU, F . "Modelling the PV System In Order To Obtain Energy Producing Capacity Using Actual System Parameters, Irradiation and Weather Temperature". International Journal of Engineering Research and Development 10 (2018): 40-52 RIS TY - JOUR T1 - Modelling the PV System In Order To Obtain Energy Producing Capacity Using Actual System Parameters, Irradiation and Weather Temperature AU - Hatice OKUMUŞ , Fatih M. NUROĞLU Y1 - 2018 PY - 2018 N1 - doi: 10.29137/umagd.441734 DO - 10.29137/umagd.441734 T2 - International Journal of Engineering Research and Development JF - Journal JO - JOR SP - 40 EP - 52 VL - 10 IS - 2 SN - -1308-5514 M3 - doi: 10.29137/umagd.441734 UR - http://dx.doi.org/10.29137/umagd.441734 Y2 - 2018 ER - EndNote %0 Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi Modelling the PV System In Order To Obtain Energy Producing Capacity Using Actual System Parameters, Irradiation and Weather Temperature %A Hatice OKUMUŞ , Fatih M. NUROĞLU %T Modelling the PV System In Order To Obtain Energy Producing Capacity Using Actual System Parameters, Irradiation and Weather Temperature %D 2018 %J International Journal of Engineering Research and Development %P -1308-5514 %V 10 %N 2 %R doi: 10.29137/umagd.441734 %U 10.29137/umagd.441734 ISNAD OKUMUŞ, Hatice , NUROĞLU, Fatih M. . "Modelling the PV System In Order To Obtain Energy Producing Capacity Using Actual System Parameters, Irradiation and Weather Temperature". International Journal of Engineering Research and Development 10 / 2 (Haziran 2018): 40-52. http://dx.doi.org/10.29137/umagd.441734