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Abstract 

The authors are presenting a novel formulation based on the Differential Quadrature (DQ) method which is 
used to approximate derivatives and integrals. The resulting scheme has been termed strong and weak form 
finite elements (SFEM or WFEM), according to the numerical scheme employed in the computation. Such 
numerical methods are applied to solve some structural problems related to the mechanical behavior of plates 
and shells, made of isotropic or composite materials.  

The main differences between these two approaches rely on the initial formulation �± which is strong or weak 
(variational) �± and the implementation of the boundary conditions, that for the former include the continuity of 
stresses and displacements, whereas in the latter can consider the continuity of the displacements or both. 

The two methodologies consider also a mapping technique to transform an element of general shape described 
in Cartesian coordinates into the same element in the computational space. Such technique can be implemented 
by employing the classic Lagrangian-shaped elements with a fixed number of nodes along the element edges or 
�E�O�H�Q�G�L�Q�J�� �I�X�Q�F�W�L�R�Q�V�� �Z�K�L�F�K�� �D�O�O�R�Z�� �D�Q�� �³�H�[�D�F�W�� �P�D�S�S�L�Q�J�´�� �R�I�� �W�K�H�� �H�O�H�P�H�Q�W���� �,�Q�� �S�D�U�W�L�F�X�O�D�U���� �W�K�H�� �D�X�W�K�R�U�V�� �D�U�H�� �H�P�S�O�R�\�L�Q�J��
NURBS (Not-Uniform Rational B-�6�S�O�L�Q�H�V�����I�R�U���V�X�F�K���Q�R�Q�O�L�Q�H�D�U���P�D�S�S�L�Q�J���L�Q���R�U�G�H�U���W�R���X�V�H���W�K�H���³�H�[�D�F�W�´���V�K�D�S�H���R�I���&�$�'��
designs. 

Keywords: Structural analysis, Numerical methods, Strong formulation finite element method, Weak 
formulation finite element method, Differential and integral quadrature, Numerical stability and accuracy 

 

1. Introduction  

 
It is well-known that a physical phenomenon can be modeled by a system of differential 
equations, which are obtained once the proper hypotheses are introduced [1]-[4]. The solution 
of these complex differential equations cannot be reached analytically, thus a numerical 
method is needed for this purpose. This statement is especially true when a structural problem 
is taken into account, such as the vibrational or static behavior of laminated composite 
structures. 

With reference to the papers by Tornabene et al. [5][6], it should be noted that the numerical 
approaches that can be employed in these circumstances are categorized according to the 

International Journal of Engineering & Applied Sciences (IJEAS) 
Vol.9, Issue 2 (Special Issue: Composite Structures) (2017) 1-21 
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formulation. In general, the solution of problem governed by a set of differential equations 
can be achieved by solving the strong or the weak form of the equations in hand. The 
governing equations are changed directly into a discrete system if the strong formulation is 
considered, since a numerical technique is introduced to approximate the derivatives. To this 
aim, different techniques can be used, such as some spectral methods for instance [7]-[9]. 
Among them, the Differential Quadrature (DQ) method should be mentioned due to its 
versatility and accuracy features [10]-[13]. A more stable and reliable approach was 
developed by Shu [14], and it is known in the literature as Generalized Differential 
Quadrature (GDQ) method. In this paper, only the main aspects of the DQ and GDQ 
techniques are presented. For the sake of completeness, the reader can find a more complete 
treatise about these methods in the review paper by Tornabene et al. [5]. 

On the other hand, the main aim of solving the weak formulation is to obtain an equivalent 
form of the governing equations by introducing a weighted-integral statement, which allows 
to reduce (or weaken) the order of differentiability of the differential equations. For this 
purpose, a numerical method able to compute integrals must be used. In the present paper, the 
Generalized Integral Quadrature (GIQ) is introduced to this aim [5][14]. Nevertheless, it 
should be mentioned that different weak form-based methods can be employed, as illustrated 
in the book by Reddy [4]. For the sake of completeness, it should be recalled that the weak 
form of the governing equations is solved also in the well-known Finite Element (FE) method 
[4][15]. 

In general, many practical applications require that the reference domain in which the 
governing equations are written is subdivided into several subdomains (or finite elements), 
due to the presence of geometric and mechanical discontinuities. At this point, a peculiar 
mapping technique can be developed to deal with arbitrarily shaped elements. Different 
approaches can be introduced for this purpose [16][17]. Recently, the theoretical framework 
provided by the Isogeometric Analysis (IGA) appears to be one of the most exploited 
approaches to study geometries with arbitrary edges [18][19]. Indeed, the use of blending 
functions based on NURBS (Non-Uniform Rational B-Splines) curves facilitates the analysis 
of generic domains. Both the domain decomposition and the mapping procedure are broadly 
used in classic FE method. Nevertheless, the same processes can be employed also when the 
strong form of the governing equations is considered [20]-[25]. The authors employ the 
names Strong Formulation Finite Element Method (SFEM) and Weak Formulation Finite 
Element Method (WFEM) to classify two different approaches based on the strong and weak 
forms of the governing equations, respectively. 

In this paper, the accuracy, reliability and stability characteristics of SFEM and WFEM are 
discussed and compared by means of some numerical examples related to structural problems. 
A brief theoretical treatise is also presented for the sake of completeness. Further details 
concerning the structural models, as well as the governing equations, can be found in the 
works [26]-[30]. 

 

2. Numerical methods 

 
The main aspects of the numerical methods used in the computations are presented briefly in 
this section. In particular, the fundamentals of DQ are introduced firstly. Then, the 
corresponding technique used to approximate integrals is illustrated starting from the concepts 
employed for the numerical evaluation of derivatives. 
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Approximation of derivatives 

The derivative of a generic function can be approximated numerically by means of the DQ 
method. The key points of this technique are the evaluation of the weighting coefficients and 
the choice of a discrete distribution of grid points within the reference domain. Let us 
consider a one-dimensional function  defined in the closed interval . Such domain 

must be preventively discretized by placing  discrete grid points , according to 

the following relation 

   (1) 

for , where  denotes the points of a generic distributions. The most 

typical grid employed in many engineering problems are listed in Table 1, assuming 

   (2) 

where not specified. On the other hand, the basis polynomials required to evaluate the 
corresponding distribution will be indicated in the following. A more complete list of discrete 
grid distributions is presented in the books [31][32] and in the review paper by Tornabene et 
al. [5]. 
It should be recalled that a smooth function  can be approximated by a set of basis 

functions , for . From the mathematical point of view, one gets 

   (3) 

in which  are unknown coefficients. By using a compact matrix form, Eq. (3) can be 

written as follows 

   (4) 

where  represents the vector of the values that the function assumes in each grid point, 
whereas the vector  collects the terms . On the other hand,  is the coefficient matrix, 

whose elements are given by , for . Since the unknown parameters 

 do not depend on , the -th order derivative of  can be computed as 

   (5) 

for . Analogously, a compact matrix form can be conveniently used 

   (6) 

where  collects the values of the -th order derivatives computed at each grid point. The 
coefficients of the matrix  are clearly given by  
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   (7) 

for . Having in mind Eq. (4), the unknown vector  can be computed as 

   (8) 

 
Table 1.  Grid point distributions. The symbol  denotes the total number of points 

Unifor (Unif) Chebyshev-Gauss-Lobatto (Cheb-Gau-Lob) 

  

Quadratic (Quad) Chebyshev I kind (Cheb I) 

  

Chebyshev II kind (Cheb II) Approximate Legendre (App Leg) 

  

Legendre-Gauss (Leg-Gau) Radau I kind (Rad I) 

  

Chebyshev-Gauss (Cheb-Gau) Legendre-Gauss-Lobatto (Leg-Gau-Lob) 

  

Hermite (Her) Laguerre (Lague) 
  

Chebyshev-Gauss-Radau (Cheb-Gau-Rad) Non uniform Ding (Ding) 

  

Legendre (Leg) Chebyshev III kind (Cheb III) 

  

Chebyshev IV kind (Cheb IV) Lobatto (Lob) 

  

Legendre-Gauss-Radau (Leg-Gau-Rad) Radau II kind (Rad II) 

  

Jacobi (Jac) Jacobi-Gauss (Jac-Gau) 
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Thus, Eq. (8) allows to write the following definition 

   (9) 

According to the differentiation matrix procedure provided by the DQ method, the -th order 
derivatives are given by 

   (10) 

in which  is the matrix that collects the so called weighting coefficients for the derivation. 
By comparing Eq. (9) and Eq. (10), it is evident that  

   (11) 

Therefore, it should be noted that the differentiation matrix  can be computed as the 
matrix product between the matrix that collects the -th order derivatives of the chosen 
basis functions at each discrete point of the domain and the inverse matrix of the operator  
that includes the values that the basis functions assume in every grid point. For completeness 
purpose, some of the basis functions that can be used for this purpose are listed in Table 2. 
As highlighted in the review paper by Tornabene et al. [5], it is possible also to employ the 
well-known Radial Basis Functions (RBFs) for the functional approximation. Analogously, 
the same approximation can be achieved through the so-called Moving Least Squares (MLS) 
method [5]. For the sake of clarity, Eq. (10) assumes the following aspect 

   (12) 

for , where  denotes the elements collected in the differentiation matrix. It 

should be noted that Eq. (12) is analogous to the definition of numerical derivative provided 
by the Generalized Differential Quadrature (GDQ) method 

   (13) 

where  are the weighting coefficients that can be collected in the corresponding matrix 

, so that one gets 

   (14) 

Eq. (14) is equivalent to the definition shown in Eq. (10). The coefficients  can be 

computed by means of the recursive expressions provided by Shu [5], whereas a matrix 
multiplication and an inversion of a matrix are required to evaluate . It should be 

highlighted that the matrix  could become ill -conditioned if the number of grid points  is 
increased, since it appears to be similar to the well-known Vandermonde matrix. It is proven 
that this problem happens for . It should be observed anyway that the number of 
discrete points is low when the reference domain is subdivided into finite elements, since the 
unknown field is well-approximated by using lower-order basis functions. However, the 
choice of particular basis functions such as Lagrange polynomials, Lagrange trigonometric 
polynomials, or the Sinc function, allows to overcome this issue since the coefficient matrix is 
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equal to the corresponding identity matrix (in other words, one gets ). Thus, when the 
solution is obtained by using a single element, the unknown field requires higher-order basis 
functions for its approximation. Consequently, the numerical problems related to the ill-
conditioned matrix can be avoided by choosing the aforementioned basis functions. 
 

Table 2.  Basis function employed for the functional approximation 

Lagrange polynomials Lagrange trigonometric polynomials 

  

Bernstein polynomials Lobatto polynomials 

  

Exponential functions Monomial polynomials 
  

Bessel polynomials Sinc functions 

  

Fourier functions Boubaker polynomials 

 
 

Jacobi Polynomials Legendre polynomials 

  

Chebyshev polynomials (I kind) Chebyshev polynomials (II kind) 

  

Chebyshev polynomials (III kind) Chebyshev polynomials (IV kind) 

  

Laguerre polynomials Hermite polynomials 
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For the sake of completeness, it should be noted that the following linear coordinate 
transformation is required to define the weighting coefficients in the physical domain 

   (15) 

for  and , where  are the weighting coefficients related to 

the physical domain, whereas  are the ones computed in the definition domain. The values 

of  can be found using the expressions shown in Table 1. 
This approach can be easily extended to two-dimensional domains, such as the ones that 
characterize the structural problem of plates and shells. Firstly, the reference domain must be 
discretized by placing  grid points along the two principal directions, respectively. 
Then, the same procedure illustrated above should be used to obtain the weighting 
coefficients for the numerical derivatives along both the main coordinates of the domain . 

In this circumstance, a two-dimensional function  is considered. In order to facilitate 

the implementation of the technique in hand, the values that this function assumes in each 
discrete point of the domain can be conveniently collected according to the following scheme 

   (16) 

in which , for  and . For the sake of clarity, this 

aspect is depicted graphically in the scheme of Figure 1. 

 
Fig. 1.  DQ implementation for a two-dimensional domain 

 
The weighting coefficients can be computed by using the Kronecker product  as follows 
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   (17) 

   (18) 

   (19) 

in which  represents the identity matrix, whereas  collect the weighting 

coefficients along the two principal coordinates, which can be evaluated as shown above. The 
size of every operator is indicated under the corresponding matrix for the sake of 
completeness. Once the weighting coefficients related to the current scheme are computed and 
collected in the corresponding matrices , the derivatives of the considered 

function are given by the following matrix products 

   (20) 

   (21) 

   (22) 

In particular,  collects the -th order derivatives with respect to ,  is the vector of 

the -th order derivatives with respect to , whereas  represents -th order 

mixed derivatives. The size of all these vectors, as well as of , is given by . 

At this point, it should be mentioned that the present approach is used to obtain and solve the 
strong form of the governing equations. If a subdivision of the reference domain into finite 
elements is required, the technique is termed Strong Formulation Finite Element Method 
(SFEM). It is clear that the vector  denotes the unknown field of the partial differential 
equations of the fundamental system, which is transformed directly into a system of discrete 
equations by means of the DQ method. 

Approximation of integrals 

Starting from the ideas and definitions illustrated for the numerical evaluation of derivatives, 
a numerical scheme for the computation of integrals can be developed. In this section, the 
main aspects of this integral quadrature are presented briefly. Since the Lagrange polynomials 
are used as basis functions for the functional approximation, the technique at issue is known 
in the literature as Generalized Integral Quadrature (GIQ). Nevertheless, it should be recalled 
that different basis functions can be chosen for the same purpose. 
Let us consider the same one-dimensional function  defined in the closed interval  

introduced in the previous section. As shown in Eq. (1), the reference domain is discretized so 
that one gets . All the grid distributions listed in Table 1 could be employed. By 

definition, the integral of  within the closed interval , with , can be 

approximated as follows  

   (23) 
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where  denotes the total number of discrete points, whereas  are the weighting 
coefficients for the integration. It should be noted that the numerical integration in Eq. (23) 
requires to consider all the sampling points of the domain independently from the integration 
limits. Eq. (23) becomes a conventional integral for  and . In order to evaluate 

the weighting coefficients, the following quantities must be introduced 

   (24) 

for . It is clear that  stands for the weighting coefficients for the first-order 

derivatives, computable through the recursive formulae provided by Shu as explained in the 
previous section. The arbitrary constant  should be set equal to  to guarantee the 
accuracy and stability of the numerical solution. The coefficients introduced in Eq. (24) can 
be collected in the corresponding matrix  of size . At this point, this last matrix 
must be inverted as follows to obtain the matrix of the weighting coefficients for the 
integration 

   (25) 

A generic term of  is specified by the notation , for . Finally, the 

weighting coefficients  needed in Eq. (23) are given by 

   (26) 

for . These  coefficients can be conveniently collected in a row vector , 

whose size is . In compact matrix form, the numerical integral  is computed as a 
vector product 

   (27) 

If the integration limits are set equal to  and , or in other words  and 

, the numerical integration can be performed by using the weighting coefficients 

, which are defined as follows 

   (28) 

A transformation of these weighting coefficients must be performed to switch from the 
reference interval  to a generic one . The weighting coefficients  in the 

physical interval  are given by  

   (29) 
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where  represents the weighting coefficients related to the shifted interval . It is 

important to underline that this approach can be applied without any restriction on the grid 
point distributions employed to discretize the reference domain. 
As shown above, the two-dimensional counterpart can be easily deducted. Let us consider a 
generic smooth function  defined in a two-dimensional domain, where the main 

coordinates  are given by  and . The numerical integral performed in 

the whole domain is defined as follows 

   (30) 

in which the weighting coefficients  can be evaluated by applying the same 

procedure just illustrated along the two principal coordinates. In order to facilitate the 
implementation process, these coefficients can be collected in the corresponding vectors 
denoted by , respectively. Even in this circumstance, the same scheme used before to 

order the grid points should be used (Figure 1). By using the Kronecker product, the vector of 
the weighting coefficients for the two-dimensional integration is obtained 

   (31) 

A simple matrix product is required to evaluate the numerical integration shown in Eq. (30). 
Analogously to the one-dimensional scheme, the integral  is given by 

   (32) 

where  assumes the meaning shown in Eq. (16). The current approach is employed to obtain 
and solve the weak form of the governing equations. When the reference domain is 
decomposed into finite elements, the technique in hand is named Weak Formulation Finite 
Element Method (WFEM). 
 

3. Applications 

 
In this section, some applications related to the structural analysis of plates and shells are 
presented. Both the strong and weak formulations are employed and the numerical results are 
obtained by using different basis functions and grid distributions. 

Isotropic plates 

The numerical tests shown in this paragraph are related to the convergence analysis of simply-
supported plates in terms of the first circular frequency . The reference solution  for this 
structure is shown in the review paper by Tornabene et al. [5]. The square plates of side 

 and thickness  are made of isotropic material ( , , 

). In the first applications, the two formulations are employed by varying 
grid distributions and basis functions in the theoretical framework provided by the Reissner-
Mindlin theory, increasing the number of grid points . The structural model is 
composed by a sole element due to its regular shape. Figure 2 and Figure 3 show the 
convergence analyses for the weak and strong formulations, respectively. It is easy to note 
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that some grid distributions do not provide accurate results. This aspect is even more evident 
for the strong formulation (Figure 3). In general, the solutions converge by using a reduced 
number of points ( ). On the other hand, the MLS method gives inaccurate results, 
especially for the weak form. For this technique, the Gaussian quadric function is used as 
basis function. 
 

  
a) b) 

  
c) d) 

  
e) f) 

  
g) h) 

Fig. 2.  Relative error for the first frequency of a simply-supported square plate. The weak formulation 
is employed considering different basis functions: a) Bernstein polynomials; b) Bessel polynomials; c) 

Boubaker polynomials; d) Chebyshev (I kind) polynomials; e) Exponential functions; f) Lagrange 
polynomials; g) Fourier basis functions; h) MLS method (Gaussian quadric basis functions) 
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A second set of convergence analyses is performed considering an isotropic rectangular plate 
( ) characterized by the same mechanical properties and 

boundary conditions of the previous tests. 

  
a) b) 

  
c) d) 

  
e) f) 

  
g) h) 

Fig. 3.  Relative error for the first frequency of a simply-supported square plate. The strong 
formulation is employed considering different basis functions: a) Bernstein polynomials; b) 

Bessel polynomials; c) Boubaker polynomials; d) Chebyshev (I kind) polynomials; e) 
Exponential functions; f) Lagrange polynomials; g) Fourier basis functions; h) MLS method 

(Gaussian quadric basis functions) 
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If  denotes the reference solution in term of natural frequency, the relative error is 

   (33) 

where  stands for the considered vibration mode. For the sake of completeness, the Navier 
type solution can be found in [5]. The same analyses are performed by means of two finite 
element commercial codes (Strand7 and Abaqus) by using several kinds of plate elements, as 
specified in Table 3. A complete description of these elements can be found in the 
corresponding documentation of the software. 
 

Table 3.  Finite elements available in the commercial codes used in the computations 

Strand7 
Quadrangular Triangular 

Quad4 (4 nodes) Tri3 (3 nodes) 
Quad8 (8 nodes) Tri6 (6 nodes) 
Quad9 (9 nodes) - 

Abaqus 
General purpose Thin structures Thick structures 

S4 (quadrangular, 4 nodes) S8R5 (quadrangular, 8 nodes) S8R (quadrangular, 8 nodes) 
S4R (quadrangular, 4 nodes) STRI65 (triangular, 6 nodes) - 

S3 (triangular, 3 nodes) - - 

As far as the present approaches are concerned, the strong formulation is used with the Cheb-
Gau-Lob (CGL) grid, whereas the Leg-Gau-Lob (LGL) is employed for the weak form. The 
Lagrange polynomials are employed for both the formulations. In this example, the reference 
domain is divided into elements and the notations  and  are introduced. The 
symbol  stands for the number of elements ( ) used for the computation. The 
results are shown in Figure 4 for the first three mode shapes of the isotropic rectangular plate, 
where the relative error is given as a function of the degrees of freedom of the problem 
( ). It can be observed that the present approaches show a rapid convergence if 
compared to the commercial codes, independently from the number of finite elements. Thus, 
the current approaches require a reduced number of degrees of freedom to obtain accurate 
results. The strong and the weak based methodologies are characterized by the same level of 
accuracy, when the corresponding structural models are considered. It is important to note that 
both the SFEM and WFEM are able to capture the reference solutions and the machine 
epsilon is reached. This aspect is highlighted by the horizontal lines in the graphs of Figure 4. 
Finally, it should be specified that the theoretical model is provided by the Reissner-Mindlin 
theory [25]. 

Laminated plates 

The same structure is considered in this paragraph to perform the convergence analyses for a 
laminated plate, whose stacking sequence is given by . The orthotropic 

mechanical properties are the following ones 

   (34) 
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As shown above, the results are given in terms of the relative error (33) related to the Navier 
solution specified in [5], for the Reissner-Mindlin theory. The notations and considerations of 
these tests are the same of the previous application. The convergence graphs are depicted in 
Figure 5. 

 
1st mode 

 
2nd mode 

 
3rd mode 

Fig. 4.  Relative error for the first three natural frequencies of a simply-supported isotropic 
rectangular plate increasing the number of degrees of freedom (DOFS). Both the strong and 
weak formulations are employed by dividing the domain into finite elements. The present 

solutions are compared with the ones obtained by different models obtained through several 
plate elements provided by two finite element commercial codes. 
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It should be noted that the machine epsilon is reached in each model for the present solution. 
On the other hand, the accuracy of the commercial codes is decreased if compared to the 
corresponding isotropic case. 
 

 
1st mode 

 
2nd mode 

 
3rd mode 

Fig. 5.  Relative error for the first three natural frequencies of a simply-supported laminated 
rectangular plate increasing the number of degrees of freedom (DOFS). Both the strong and 
weak formulations are employed by dividing the domain into finite elements. The present 

solutions are compared with the ones obtained by different models obtained through several 
plate elements provided by two finite element commercial codes. 
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In the applications just presented there is no need of a mapping procedure, since the domain 
has a regular shape. In the following, a fully clamped circular plate of radius  and 

thickness  is analyzed. The lamination scheme is given by  and the two layers have 

the properties shown in (34) and the same thickness. The convergence analyses are shown in 
Figure 6 for two ratios  to deal with thick and thin structures, respectively. 
 

 
a)  

 
b)  

Fig. 6.  First natural frequency for a fully clamped laminated circular plate increasing the number of 
degrees of freedom (DOFS), for two different thickness values: a) ; b)  

 
As shown above, several kinds of plate elements are considered when the solutions are 
obtained by means of the finite element commercial codes. As far as the present approach is 
concerned, only the strong formulation is solved by using different element configurations, as 
specified in the legend of the corresponding graphs, where the number of nodes required for 
the mapping of the curved edges of the structure is indicated too. An isogeometric mapping 
based on NURBS curves is also implemented and compared with the other results. Only for 
the thicker case, a three-dimensional finite element solution (achieved by means of Strand7 
and Abaqus) is computed and taken as a reference. These models are obtained through brick 
elements made of 20 nodes, named Hexa20 and C3D20 respectively. Both the SFEM and 
NURBS graphs tend to this solution with a reduced number of degrees of freedom. On the 
other hand, some types of elements provide convergence plots that are considerably detached 
from the reference ones, since they are not suitable to deal with this particular problem. 
Indeed, a similar tendency is achieved by means of each element for the thin plate. Finally, it 
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should be specified that the solutions are obtained in the framework of the Reissner-Mindlin 
theory. 

Laminated shells 

The last example is focused on the free vibration analysis of a doubly-curved laminated 
translational shell made of two orthotropic layers of equal thickness, whose geometry is 
widely described in the paper by Tornabene et al. [26]. The stacking sequence is given by 

, and their mechanical properties are the following ones 

   (35) 

The overall thickness is assumed as . In this case, the first ten natural frequencies 
are obtained by solving only the weak formulation of the governing equations. A unified 
formulation is used to deal with higher-order shear deformation theories, as illustrated in the 
paper [30], where the reader can find a complete treatise about these structural models, as well 
as the nomenclature to denote them. The Leg-Gau-Lob grid distribution is employed by 
setting  and  as number of discrete points along the two principal directions. 
The first ten natural frequencies are presented in Table 4, together with the reference solution 
obtained by Abaqus (three-dimensional finite element model). All the numerical solutions are 
in good agreement with the reference one. For the sake of completeness, the first three mode 
shapes are depicted in Figure 7, where it is easy to note also the adopted boundary conditions. 
In particular, only one of the two external edges is fully clamped, whereas the other one is 
free. 
 

Table 4.  First ten frequencies for a doubly-curved laminated panel 

Mode 
[Hz]      

3D FEM 
Abaqus 

 21.808 21.821 22.134 21.798 21.826 21.811 
 22.323 22.347 22.388 22.186 22.207 22.205 
 22.576 22.589 22.883 22.557 22.584 22.566 
 33.055 33.089 33.013 32.824 32.857 32.854 
 43.251 43.287 43.622 43.053 43.109 43.085 
 44.870 44.874 45.932 44.957 45.027 44.986 
 45.641 45.641 46.774 45.754 45.832 45.783 
 52.459 52.489 52.837 52.251 52.308 52.263 
 54.176 54.186 54.694 54.570 54.571 54.561 
 64.235 64.258 64.290 64.001 64.039 64.006 
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1st mode 2nd mode 3rd mode 

   
4th mode 5th mode 6th mode 

 
Fig. 7.  First six mode shapes for a doubly-curved laminated shell of translation 

 
 

4. Conclusions 

 
The authors have presented two numerical approaches based on the DQ method to 
approximate derivatives and integrals, respectively. These techniques have been applied to 
solve some structural problems related to the mechanical behavior of plates and shells made 
of isotropic and composite materials. In particular, the accuracy and stability features of a 
strong formulation (SFEM) and a weak formulation (WFEM) have been discussed by means 
of some numerical analyses. Several basis polynomials for the functional approximation and 
different discrete grid distributions have been tested and compared. For this purpose, some 
convergence analyses have been performed by increasing the number of sampling points 
within the elements, for both a single element domain and a multi-element domain. The 
present solutions have been compared also with the results obtained through two commercial 
codes. These finite element models have been achieved by using several kinds of plate 
elements available in the software libraries. In general, the present methodologies have 
proven to be more accurate and characterized by a faster convergence ratio than the 
commercial codes. 
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Abstract 

In this study, longitudinal vibration of a carbon nanotube with an attached damper has been investigated using the 
nonlocal stress gradient elasticity theory. Equations of motions have been solved analytically and frequencies of 
clamped-clamped and clamped-free nanotubes have been obtained explicitly in terms of damping coefficient, nonlocal 
parameter, the attachment point of damper and nanotube length. The nonlocal effects have important effects on the 
dynamics of a CNT with an attached damper. 

Keywords: longitudinal vibration; viscously damped; carbon nanotubes; nonlocal elasticity 

1. Introduction 

Discovery of carbon nanotubes (CNTs) by Iijima [1] has important results on nanotechnology. With 
superior properties like electrical and heat conductivity, strength, density etc., scientists have 
considered use of CNTs in many areas: nano-electromechanical devices, nano-pharmaceutical 
products, nano-bearings, nano-sensors, etc. 

Dynamic behavior of CNTs at different areas is very important in design of nano-products. 
Nowadays, scientists try to use CNTs in medical applications [2,3], bearing-like products [4,5], 
electromagnetic damping process [6] and molecular transportation [7,8] etc. 

Generally, two modeling techniques are used in nano-mechanics: continuum model and discrete 
model. Because of the size independence, classical theories are not suitable at nanoscale. Nonlocal 
Elasticity, a modified continuum model, was firstly proposed by Eringen [9,10]. In this theory 
mechanical behavior of materials is size dependent. Also Molecular Dynamics (MD) Simulations are 
used as a discrete model in nano-mechanics. Both models give more acceptable results than the 
classical theory when compared to the lattice dynamics results. 

Recently, wave propagation in SWCNTs has been compared for the nonlocal continuum models and 
MD Simulations [11]. Very close results were obtained between two results. Lattice Dynamic results 
for longitudinal wave propagation in nanotubes have been investigated in previous studies [12]. 

Thermal, concentration or electromagnetic fields can cause a damping effect on CNTs [13] . Wang et 
al. [14] have studied asymmetric vibration of a single-walled carbon nanotubes (SWCNTs) immersed 
in water. Assuming that, water can establish a viscous damping effect on axisymmetric radial, 
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longitudinal and torsional vibration. Rinaldi et al. [15] investigated the fluid conveying micro scale 
pipes with the effects of flow velocity on damping, stability and frequency shift. Vibration and 
instability analysis of CNTs with a fluid flow is studied by Ghavanloo et al. [16] and microtubules in 
surrounding cytoplasm is investigated by Ghavanloo et al. [17]. In plane and flexural vibration of 
fluid conveying CNTs in viscoelastic medium is studied by [18] and in viscous fluid is studied by 
Ghavanloo et al. [19]. Yun et al. [20] have obtained the free vibration and flow-induced flutter 
instability of fluid conveying multi-walled carbon nanotubes (MWCNTs). Vibrations and instability 
of fluid conveying double-walled carbon nanotubes (DWCNTs) is studied using the modified couple 
stress theory by Zeighampour and Tadi Beni [21]. Martin and Houston [22] investigated the gas 
damping effect on CNT based nano-resonator operating in low vacuum conditions. The natural 
frequencies of aligned SWCNT reinforced composite beams were obtained using shear deformable 
composite beam theories by Aydogdu [23]. Chemi et al. [24] investigated elastic buckling of chiral 
DWCNTs under axial compression. Longitudinal forced vibration of nanorods studied by Aydogdu 
and Arda [25] using the nonlocal elasticity theory of Eringen. They considered uniform, linear and 
sinusoidal loads on axial direction. 

One of the possible medical applications of CNTs is the viscous fluid conveying SWCNT embedded 
in biological soft tissue. Transverse vibrational model is studied by Soltani et al. [26]. They 
simulated the viscoelastic behavior of surrounding tissue using Kevin-Voigt model. In addition to 
mentioned work, transverse vibration of fluid conveying DWCNTs embedded in biological soft 
tissue is investigated by Zhen et al. [27]. 

Hoseinzadeh and Khadem [28] studied the thermoelastic vibration and damping of DWCNT upon 
interlayer van der Waals interaction and initial axial stress. Same authors also investigated the 
thermoelastic vibration behavior and damping of DWCNTs using nonlocal shell theory [29]. 
Thermoelastic damping in a DWCNT under electrostatic actuation is obtained through an analytical 
method by Hajnayeb and Khadem [30]. 

Magnetic damping effect on CNTs as a nanoelectromechanical resonators is studied by Schmid et al. 
[31] at cryogenic temperature. Chang and Lee [32] investigated vibration behavior of CNTs using 
non-local viscoelasticity theory including thermal and foundation effects. 

Damping effect on rods for various boundary conditions is investigated at macro scale by [33�±35]. 
Viscoelastic properties of SWCNTs are investigated with a semi-analytical approach and associated 
damping mechanism at nano scale by Zhou et al. [36]. Jeong et al. [37] modeled the nonlinear 
damping behavior of micro cantilever-nanotube system and compared with measurement results. 
Adhikari et al. [38] investigated free and forced axial vibrations of strain-rate depended viscous 
damping and velocity dependent viscous damped nonlocal rods. The asymptotic frequencies of four 
kinds of nonlocal viscoelastic damped structures, including an Euler-Bernoulli beam with rotary 
inertia, a Timoshenko beam, a Kirchhoff plate with rotary inertia and a Mindlin plate are studied by 
Lei et al. [39]. Arani et al. [40] investigated the vibration of double viscoelastic CNTs conveying 
viscous fluid coupled by visco-Pasternak medium using the surface nonlocal theory. �.�D�U�O�L�þ�L�ü et al. 
[41] studied free longitudinal vibration of a nonlocal viscoelastic double-nanorod system as a 
�F�R�P�S�O�H�P�H�Q�W�D�U�\���V�W�X�G�\���D�W���Q�D�Q�R���V�F�D�O�H���W�R���(�U�R�O���D�Q�G���*�•�U�J�|�]�H�¶�V���S�D�Ser  [42]. 

Mechanical response of a CNT atomic force microscope (AFM) probe tip contact is an important 
problem (Fig.1). This response can be modeled as a spring [43] or damping element according 
continuum mechanics. Damping of a mechanical resonators based on CNTs is studied by Eichler et 
al. [44]. Li et al. [45] investigated the mechanical oscillatory behaviors of MWCNT oscillators in 
gaseous environment using MD simulation. Suspended carbon nanotube resonators behavior over a 
broad range of temperatures to explore the physics of semi flexible polymers in underdamped 
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environments simulated by Barnard et al. [46]. �+�•�W�W�H�O�� �H�W���D�O�� [47] observed the transversal vibration 
mode of suspended CNTs at miliKelvin temperatures by measuring the single electron tunneling 
current. The measured magnitude and temperature dependence of the Q factor shown a remarkable 
agreement with the intrinsic damping predicted for a suspended carbon nanotube. According to 
�D�X�W�K�R�U�¶�V���O�L�W�H�U�D�W�X�U�H���N�Q�R�Z�O�H�G�J�H�����Y�L�E�U�D�W�L�R�Q���R�I���D�� �Q�D�Q�R�U�R�G���Z�L�W�K���D�Q���D�W�W�D�F�K�H�G���Y�L�V�F�R�X�V���G�D�P�S�H�U�� �K�D�V�� �Q�R�W���E�H�H�Q��
considered in the previous studies. 

 

Fig. 1. SEM Image of a MWCNT Attached to Pyramidal Si Tip [43] 

2. Analysis 

�$�� �Q�D�Q�R�U�R�G�� �R�I�� �O�H�Q�J�W�K�� �/�� �D�Q�G�� �G�L�D�P�H�W�H�U�� �¥�� �L�V�� �F�R�Q�V�L�G�H�U�H�G���� �$�� �Y�L�Vcous damper is attached at an arbitrary 
point of the rod (Fig. 2). The equation of motion in the longitudinal direction can be expressed as: 

 �'�#
�! �. �è

�! �ë�. 
L �I
�! �. �è

�! �ç�.
             (1) 

where A is the cross-section area , E is the Young Modulus and m is the mass per unit length. In Fig. 
(2), ����defines the attachment point of the viscous damper, L is the length of nanorod, d is the 
damping coefficient of viscous damper and u(x,t) is the displacement in longitudinal direction. 

2.1. Equation of motion of nanorod in nonlocal model 

The nonlocal constitute relation can be given as [9,10] : 

 �:�s
F �ä�Ø�6�;�ì�Þ�ß
L �ã�Ý�å�å�Ü�Þ�ß
E�t�)�Ý�Þ�ß                       (2) 

where �2kl is the nonlocal stress tensor, �0kl is the strain tensor, �� and G are the lame constants, ��� ���H0a)2. 
�—���L�V��called the nonlocal parameter, a is an internal characteristic length and e0 is a constant. In this 
study, �����”�����Q�P2 is accepted for SWCNTs. Using the Nonlocal Elasticity Theory in one dimensional 
form leads following equation of motion: 

 �'�#
�! �. �è

�! �ë�. 
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�! �ç�.
            (3) 

If the nonlocal parameter �— is assumed identically zero, Eq. (3) reduces to classical rod model. In 
order to study the equation of motion of a nanorod with an attached viscous damper, the nanorod is 
divided into two parts. The equation of motion for each segment can be written as: 
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where �Q�5 and �Q�6 denote displacement of the left and the right segments of the nanorod respectively. 
The corresponding boundary and continuity conditions are written as: 

 

 

Fig. 2 Nanorod model with a viscous damper in a)C-C boundary condition b)C-F boundary condition 

Clamped-Clamped (C-C): 
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Clamped-Free (C-F): 
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�!�ë���! �ç�.

E�@

�! �è�-�:���Å�á�ç�;

�!�ç

F �J�@

�! �/ �è�-�:���Å�á�ç�;

�! �ë�. ���!�ç

L �r�á  

 �'�#
�! �è�. �:�Å�á�ç�;

�!�ë

E�J�I

�! �/ �è�. �:�Å�á�ç�;

�!�ë���! �ç�.

L �r                       (6) 

The longitudinal displacement ui can be expressed as: 

 �Q�Ü�:�T�á�P�; 
L �7�Ü�:�T�;���A���ç���������á�����������:�E
L �s�á�t�;                      (7) 

where Ui(x) and �� is the amplitude function and characteristic value respectively. Inserting Eq.(7) 
into Eq.(4) gives following dimensionless equations of motion: 

 
�! �. �Î �Ô

�! �ë�. 
F �Ú�6�7�Ü
L �r�����������á�����������:�E
L �s�á�t�;                       (8) 

where: 

 �Ú�6 
L
�à �� �.

�¾�º�>�œ�à �� �.
                        (9) 
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The solutions of Eq.(8) are: 

 �7�5�:�T�; 
L �%�5�A�	�ë 
E�%�6�A�?�	�ë          (10) 
 �7�6�:�T�; 
L �%�7�A�	�ë 
E�%�8�A�?�	�ë           (11) 

where C1, C2, C3 and C4 are the undetermined coefficients. For the C-C boundary condition, 
eigenvalue equation is obtained using Eq.(5), Eq.(10) and Eq.(11): 

 
f

�%�%�5�5 �%�%�5�6���������%�%�5�7 �%�%�5�8
�%�%�6�5 �%�%�6�6���������%�%�6�7 �%�%�6�8
�%�%�7�5 �%�%�7�6���������%�%�7�7 �%�%�7�8

�%�%�8�5 �%�%�8�6���������%�%�8�7 �%�%�8�8


j 
f

�%�5
�%�6
�%�7
�%�8


j 
L �r                    (12) 

where 
�%�%�5�5
L �s�����á �%�%�5�6
L �s�����á �%�%�5�7
L �r�����á �%�%�5�8
L �r�����á 

�%�%�6�5
L �r�����á �%�%�6�6
L �r�����á �%�%�6�7
L �A�	�Å�����á �%�%�6�8
L �A�?�	�Å�����á 
�%�%�7�5
L �A�	���Å�����á �%�%�7�6
L �A�?�	���Å�����á �%�%�7�7
L 
F�A�	���Å�����á �%�%�7�8
L 
F�A�	���Å���� 

�%�%�8�5
L �A�	���Å
k�s
E�Ù
E�&�:�s
F�J�Ú�6�;�5���6
o�����á 
�%�%�8�6
L �A�?�	���Å
k
F�s
F �Ù
E�&�:�s
F �J�Ú�6�;�5���6
o�����á 

�%�%�8�7
L �A�	���Å�:
F�s
F �Ù�;�����á 
 �%�%�8�8
L �A�?�	���Å�:�s
E�Ù�;                      (13) 

and for the C-F boundary condition, eigenvalue equation is obtained using Eq.(6), Eq.(10)  and 
Eq.(11): 

 
f

�%�(�5�5 �%�(�5�6���������%�(�5�7 �%�(�5�8
�%�(�6�5 �%�(�6�6���������%�(�6�7 �%�(�6�8
�%�(�7�5 �%�(�7�6���������%�(�7�7 �%�(�7�8

�%�(�8�5 �%�(�8�6���������%�(�8�7 �%�(�8�8


j 
f

�%�5
�%�6
�%�7
�%�8


j 
L �r                     (14) 

where 
�%�(�5�5
L �s�����á �%�(�5�6
L �s�����á �%�(�5�7
L �r�����á �%�(�5�8
L �r�����á 

�%�(�6�5
L �r�����á �%�(�6�6
L �r�����á �%�(�6�7
L �:�s
E�=�;�A�	�Å�����á �%�(�6�8
L �:
F�s
F �=�;�A�?�	�Å�����á 
�%�(�7�5
L �A�	���Å�����á �%�(�7�6
L �A�?�	���Å�����á �%�(�7�7
L 
F�A�	���Å�����á �%�(�7�8
L 
F�A�	���Å�����á 

�%�(�8�5
L �A�	���Å
k�s
E�Ù
E�&�:�s
F�J�Ú�6�;�5���6
o�����á 
�%�(�8�6
L �A�?�	���Å
k
F�s
F �Ù
E�&�:�s
F �J�Ú�6�;�5���6
o�����á 

�%�(�8�7
L �A�	���Å�:
F�s
F �Ù�;�����á 
 �%�(�8�8
L �A�?�	���Å�:�s
E�Ù�;                       (15) 

For a nontrivial solution the determinant of the coefficient matrix in Eq.(12) and Eq.(14) must be 
zero. If these determinant equations are rearranged, following characteristic equations are obtained 
for each boundary conditions considered: 

 �t�:�Ù
E�s�;�•�‹�•�Š
k�Ú�§
o
E�&�@�s
F
�œ

�Å�.
�Ú�§�6�A

�-
�. 
[�…�‘�•�Š
k�Ú�§
o
F�…�‘�•�Š
c�:�s
F �t�ß�;�Ú�§
g
_
L �r���\ ���:�%
F �%�;      (16) 

 �t�:�Ù
E�s�;�…�‘�•�Š
k�Ú�§
o
E�&�@�s
F
�œ

�Å�.
�Ú�§�6�A

�-
�. 
[�•�‹�•�Š
k�Ú�§
o
F�•�‹�•�Š
c�:�s
F �t�ß�;�Ú�§
g
_
L �r���\ ���:�%
F �(�;      (17) 

where 
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 �Ù
L
�œ

�Å�.
�	
%�.

�@�5�?
�”
�½�.

�	
%�. �A
�����������á�����������&
L

�×�Ö

�¾�º
�����������á�����������?
L 
§

�¾

��
�����������á�����������Ú�§
L �Ú�.       (18) 

where �. is the dimensionless coefficient, D is the dimensionless damping coefficient, c is the 
velocity of the wave propagation along the nanorod and �Ú�§ is the dimensionless characteristic 
parameter. �Ú�§ is a complex number and its imaginary part defines the non-dimensional frequency 
(NDF) and real part defines the non-dimensional damping coefficient (NDD) of nanorod. Damping 
ratio (�æ) of nanorod is defined in the following form: 

 �æ
L
���R�H�H��

�¾�R�H�J�. �>�R�H�H�.
                      (19) 

3. Numerical Results and Discussion 

In this section, the non-dimensional frequency (NDF) and non-dimensional damping coefficient 
(NDD) of the nanorod are investigated for different dimensionless damping coefficient, nanotube 
length, nonlocal parameter and the attachment point of viscous damper. Geometrical and material 
properties of the CNT are taken from Ref. [48]. The validity of present work is checked in the next 
section. 

3.1. Validation of the Present Results 

By assuming nonlocal parameter is identica�O�O�\���]�H�U�R�����—� ���������W�K�H���O�R�F�D�O���P�R�G�H�O���V�R�O�X�W�L�R�Q�V���D�U�H���R�E�W�D�L�Q�H�G�����7�K�H��
dimensionless characteristic values are compared with local model from Ref. [33] and Ref. [34] for C-
C and C-F boundary conditions in Table 1. Good agreement is observed between two results. 

 
Table 1 Comparison of characteristic values with literature (�� = 0.6) 

 Present Work [34] [33] 

 C-C C-F C-C C-F 

�Ú�5
$
$
$ -0.020352+3.141619i -0.001439+1.570796i -0.020349+3.141619i -0.001472+1.570796i 

�Ú�6
$
$
$ -0.007773+6.283168i -0.000210+4.712389i -0.007772+6.283168i -0.000214+4.712389i 

�Ú�7
$
$
$ -0.007773+9.424794i -0.002200+7.853981i -0.007772+9.424794i -0.002249+7.853981i 

3.2. Dimensionless Damping Effect on NDF and NDD 

In Figs. (3-14) and Tables (2-3), variations of NDF and NDD with dimensionless damping coefficient 
for C-C and C-F boundary condition are depicted. According to these results following conclusions are 
obtained: 

The fundamental NDF value increases but the second and third NDF decrease with increasing D for the 
C-C boundary condition. However, for the C-�)�� �E�R�X�Q�G�D�U�\�� �F�R�Q�G�L�W�L�R�Q���� �Y�D�U�L�D�W�L�R�Q���R�I�� �1�'�)�� �G�H�S�H�Q�G�V���R�Q��������
�)�L�U�V�W���D�Q�G���V�H�F�R�Q�G���1�'�)���L�Q�F�U�H�D�V�H���Z�K�H�U�H�D�V���W�K�L�U�G���1�'�)���G�H�F�U�H�D�V�H�V���Z�L�W�K���L�Q�F�U�H�D�V�L�Q�J���'���Z�K�H�Q���������������������2�Q���W�K�H��
other hand, first and second NDF decrease and third NDF increase with increasing D when ���� �!�� ��������
(See Table (2) and (3)). Generally, NDD increases with increasing D except for some cases. For 
smaller nanotube length, nonlocal effect is more pronounced and it reduces the NDD (See Figs. (4) and 
(6)). 

NDF decreases with increasing the nonlocal parameter for both C-C and C-F boundary condition. The 
�Q�R�Q�O�R�F�D�O���H�I�I�H�F�W���G�H�F�U�H�D�V�H�V���Z�L�W�K���L�Q�F�U�H�D�V�L�Q�J���Q�D�Q�R�W�X�E�H�� �O�H�Q�J�W�K�����1�'�'���L�Q�F�U�H�D�V�H�V���Z�L�W�K�� �L�Q�F�U�H�D�V�L�Q�J���—���I�R�U���E�R�W�K��
C-C and C-F boundary condition (See Figs. (3-10)). 
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The attachment point of damper has different effects on NDF for C-C and C-F cases. In C-C boundary 
�F�R�Q�G�L�W�L�R�Q���� �I�X�Q�G�D�P�H�Q�W�D�O�� �1�'�)�� �G�H�F�U�H�D�V�H�V���� �K�R�Z�H�Y�H�U�� �V�H�F�R�Q�G�� �D�Q�G�� �W�K�L�U�G�� �1�'�)�� �L�Q�F�U�H�D�V�H�� �Z�K�H�Q�� ������ ���������� �7�K�H��
�R�E�W�D�L�Q�H�G�� �U�H�V�X�O�W�V�� �I�R�U�� �1�'�)�� �D�Q�G�� �1�'�'���D�U�H�� �V�\�P�P�H�W�U�L�F�� �Z�L�W�K�� �U�H�V�S�H�F�W���W�R������ � �������������L���H���� �U�H�V�X�O�W�V���R�I�� ���� � ���������� �D�U�H��
�H�T�X�D�O���W�R������� �������������H�W�F���������7�K�H���1�'�'���L�V���P�D�[�L�P�X�P���D�W������� ��������. 

 

�)�L�J�����������9�D�U�L�D�W�L�R�Q���R�I���1�'�)���Z�L�W�K���G�L�P�H�Q�V�L�R�Q�O�H�V�V���G�D�P�S�L�Q�J���F�R�H�I�I�L�F�L�H�Q�W������������� ���������������/��� ���������Q�P�� 

 

�)�L�J�����������9�D�U�L�D�W�L�R�Q���R�I���1�'�'���Z�L�W�K���G�L�P�H�Q�V�L�R�Q�O�H�V�V���G�D�P�S�L�Q�J���F�R�H�I�I�L�F�L�H�Q�W������������� ���������������/��� ���������Q�P�� 
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Fig. 5. Variation of NDF with di�P�H�Q�V�L�R�Q�O�H�V�V���G�D�P�S�L�Q�J���F�R�H�I�I�L�F�L�H�Q�W������������� ���������������/��� ���������Q�P�� 

 

�)�L�J�����������9�D�U�L�D�W�L�R�Q���R�I���1�'�'���Z�L�W�K���G�L�P�H�Q�V�L�R�Q�O�H�V�V���G�D�P�S�L�Q�J���F�R�H�I�I�L�F�L�H�Q�W������������� ���������������/��� ���������Q�P�� 
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�)�L�J�����������9�D�U�L�D�W�L�R�Q���R�I���1�'�)���Z�L�W�K���G�L�P�H�Q�V�L�R�Q�O�H�V�V���G�D�P�S�L�Q�J���F�R�H�I�I�L�F�L�H�Q�W������������� ���������������/��� ���������Q�P�� 

  

Fig. 8. Vari�D�W�L�R�Q���R�I���1�'�'���Z�L�W�K���G�L�P�H�Q�V�L�R�Q�O�H�V�V���G�D�P�S�L�Q�J���F�R�H�I�I�L�F�L�H�Q�W������������� ���������������/��� ���������Q�P�� 
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�)�L�J�����������9�D�U�L�D�W�L�R�Q���R�I���1�'�)���Z�L�W�K���G�L�P�H�Q�V�L�R�Q�O�H�V�V���G�D�P�S�L�Q�J���F�R�H�I�I�L�F�L�H�Q�W������������� ���������������/��� ���������Q�P�� 

 

�)�L�J�������������9�D�U�L�D�W�L�R�Q���R�I���1�'�'���Z�L�W�K���G�L�P�H�Q�V�L�R�Q�O�H�V�V���G�D�P�S�L�Q�J���F�R�H�I�I�L�F�L�H�Q�W������������� ���������������/��� ��������nm) 

For the  C-F boundary condition, first and second NDF decreases and third NDF increases with 
�L�Q�F�U�H�D�V�L�Q�J�������D�Q�G���U�H�D�F�K�H�V���D���P�D�[�L�P�X�P���Y�D�O�X�H���D�W������� ���������6�H�H���7�D�E�O�H�����������D�Q�G������������ 

Nanotube length has effect on NDF and NDD only for the nonlocal results. The local r�H�V�X�O�W�V�����—� �������D�U�H��
not affected by change of nanotube length (See Table (2) and (3)). This is an expected result from the 
classical theory. The NDF increases and the NDD decreases with increasing nanotube length in the 
nonlocal case. 

�'�D�P�S�L�Q�J�� �U�D�W�L�R�� �������� �L�Q�F�U�H�Dses with increasing dimensionless damping coefficient (D) generally. 
Attachment point of damper increases damping ratio in C-�)���F�D�V�H���Z�K�H�Q�������L�V���D�S�S�U�R�D�F�K�L�Q�J���W�R���������,�Q���&-C 
�F�D�V�H�����G�D�P�S�L�Q�J���U�D�W�L�R���U�H�D�F�K�H�V���P�D�[�L�P�X�P���Y�D�O�X�H���D�W������� �������������)�R�U���O�R�Q�J�H�U���Q�D�Q�R�W�X�E�H���O�H�Q�J�W�K�����O�R�F�D�O���Dnd nonlocal 
damping ratios have very close values, since bigger nanotube length reduces the nonlocal effect. 
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Table 2 Characteristic values of nanorod for C-C boundary condition 

   Dimensionless Damping Coefficient (D) 
   ����� �������� ����� �������� 

�� L 
(nm) 

 �—� ����nm2 �—� �����Q�P2 �—� �����Q�P2 �—� �����Q�P2 

0.3 

10 
�Ú�5
$
$
$ -0.3326+3.1744i -0.4490+3.1663i -1.1147+3.6824i -1.8652+2.7424i 

�Ú�6
$
$
$ -0.4647+6.2550i -0.9872+5.8387i -1.9599+5.7909i -0.6720+4.5281i 

�Ú�7
$
$
$ -0.0478+9.4219i -0.2102+9.3442i -0.1444+9.3969i -0.2031+9.0587i 
      

30 
�Ú�5
$
$
$ -0.3326+3.1744i -0.3446+3.1742i -1.1147+3.6824i -1.2340+3.7502i 

�Ú�6
$
$
$ -0.4647+6.2550i -0.5283+6.2350i -1.9599+5.7909i -2.0674+5.1729i 

�Ú�7
$
$
$ -0.0478+9.4219i -0.0626+9.4197i -0.1444+9.3969i -0.1875+9.3721i 
       

0.5 

10 
�Ú�5
$
$
$ -0.5108+3.1416i -0.6617+3.0680i -1.9459+3.1416i -1.8301+2.2991i 

�Ú�6
$
$
$ 0+6.2832i 0+6.2832i 0+6.2832i 0+6.2832i 

�Ú�7
$
$
$ -0.5108+9.4248i -1.6761+8.1626i -1.9459+9.4248i -1.0926+6.6017i 
      

30 
�Ú�5
$
$
$ -0.5108+3.1416i -0.5279+3.1356i -1.9459+3.1416i -1.9958+2.9986i 

�Ú�6
$
$
$ 0+6.2832i 0+6.2832i 0+6.2832i 0+6.2832i 

�Ú�7
$
$
$ -0.5108+9.4248i -0.6780+9.3988i -1.9459+9.4248i -2.5840+8.4288i 
       

0.7 

10 
�Ú�5
$
$
$ -0.3326+3.1744i -0.4490+3.1663i -1.1147+3.6824i -1.8652+2.7424i 

�Ú�6
$
$
$ -0.4647+6.2550i -0.9872+5.8387i -1.9599+5.7909i -0.6720+4.5281i 

�Ú�7
$
$
$ -0.0478+9.4219i -0.2102+9.3442i -0.1444+9.3969i -0.2031+9.0587i 
      

30 
�Ú�5
$
$
$ -0.3326+3.1744i -0.3446+3.1742i -1.1147+3.6824i -1.2340+3.7502i 

�Ú�6
$
$
$ -0.4647+6.2550i -0.5283+6.2350i -1.9599+5.7909i -2.0674+5.1729i 

�Ú�7
$
$
$ -0.0478+9.4219i -0.0626+9.4197i -0.1444+9.3969i -0.1875+9.3721i 

 

 

�)�L�J�������������9�D�U�L�D�W�L�R�Q���R�I���G�D�P�S�L�Q�J���U�D�W�L�R�����������Z�L�W�K���G�L�P�H�Q�V�L�R�Q�O�H�V�V���G�D�P�S�L�Q�J���F�R�H�I�I�L�F�L�H�Q�W���'��������� �������������/��� ���������Q�P�� 
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Table 3 Characteristic values of nanorod for C-F boundary condition 
   Dimensionless Damping Coefficient (D) 
   ����� �������� ����� �������� 

�� L 
(nm) 

 �—� �����Q�P2 �—� �����Q�P2 �—� �����Q�P2 �—� �����Q�P2 

0.3 

10 
�Ú�5
$
$
$ -0.1034+1.5793i -0.1114+1.5796i -0.3136+1.6625i -0.3472+1.6707i 

�Ú�6
$
$
$ -0.5029+4.7284i -0.8914+4.5744i -2.1677+4.9632i -1.9622+3.1264i 

�Ú�7
$
$
$ -0.2527+7.8278i -0.6570+7.4139i -0.7900+7.4916i -0.3603+6.8108i 
      

30 
�Ú�5
$
$
$ -0.1034+1.5793i -0.1043+1.5793i -0.3136+1.6625i -0.3171+1.6634i 

�Ú�6
$
$
$ -0.5029+4.7284i -0.5435+4.7215i -2.1677+4.9632i -2.4331+4.5761i 

�Ú�7
$
$
$ -0.2527+7.8278i -0.3060+7.8105i -0.7900+7.4916i -0.8028+7.2631i 
       

0.5 

10 
�Ú�5
$
$
$ -0.2554+1.5708i -0.2746+1.5637i -0.9730+1.5708i -1.0051+1.4147i 

�Ú�6
$
$
$ -0.2554+4.7124i -0.4559+4.6657i -0.9730+4.7124i -1.1215+3.7590i 

�Ú�7
$
$
$ -0.2554+7.8540i -0.9220+7.5255i -0.9730+7.8540i -0.6012+6.3805i 
      

30 
�Ú�5
$
$
$ -0.2554+1.5708i -0.2575+1.5701i -0.9730+1.5708i -0.9810+1.5531i 

�Ú�6
$
$
$ -0.2554+4.7124i -0.2754+4.7100i -0.9730+4.7124i -1.0979+4.6400i 

�Ú�7
$
$
$ -0.2554+7.8540i -0.3128+7.8492i -0.9730+7.8540i -1.3783+7.5994i 
       

0.7 

10 
�Ú�5
$
$
$ -0.4058+1.5368i -0.4298+1.5150i -1.5566+0.9318i -1.3030+0.8760i 

�Ú�6
$
$
$ -0.0122+4.7120i -0.0212+4.7112i -0.0368+4.7089i -0.0636+4.7006i 

�Ú�7
$
$
$ -0.2527+7.8801i -1.3054+7.8292i -0.7900+8.2164i -1.4398+5.7877i 
      

30 
�Ú�5
$
$
$ -0.4058+1.5368i -0.4086+1.5345i -1.5566+0.9318i -1.5149+0.9222i 

�Ú�6
$
$
$ -0.0122+4.7120i -0.0132+4.7119i -0.0368+4.7089i -0.0396+4.7083i 

�Ú�6
$
$
$ -0.2527+7.8801i -0.3095+7.8888i -0.7900+8.2164i -0.9144+8.5625i 
 

  

�)�L�J�������������9�D�U�L�D�W�L�R�Q���R�I���G�D�P�S�L�Q�J���U�D�W�L�R�����������Z�L�W�K���G�L�P�H�Q�V�L�R�Q�O�H�V�V���G�D�P�S�L�Q�J���F�R�H�I�I�L�F�L�H�Q�W���'��������� �������������/��� ���������Q�P�� 
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�)�L�J�������������9�D�U�L�D�W�L�R�Q���R�I���G�D�P�S�L�Q�J���U�D�W�L�R�����������Z�L�W�K���G�L�P�H�Q�V�L�R�Q�O�H�V�V���G�D�P�S�L�Q�J���F�R�H�I�I�L�F�L�H�Q�W���'��������� �������������/��� ��������nm) 

 

�)�L�J�������������9�D�U�L�D�W�L�R�Q���R�I���G�D�P�S�L�Q�J���U�D�W�L�R�����������Z�L�W�K���G�L�P�H�Q�V�L�R�Q�O�H�V�V���G�D�P�S�L�Q�J���F�R�H�I�I�L�F�L�H�Q�W���'��������� �������������/��� ���������Q�P�� 
 

�'�D�P�S�L�Q�J�� �U�D�W�L�R�� �������� �L�Q�F�U�H�D�V�H�V�� �Z�L�W�K�� �L�Q�F�U�H�D�V�L�Q�J�� �G�L�P�H�Q�V�L�R�Q�O�H�V�V�� �G�D�P�S�L�Q�J�� �F�R�H�I�I�L�F�L�H�Q�W�� ���'���� �J�H�Q�H�U�D�O�O�\����
Attachment point of damper increases damping ratio in C-�)���F�D�V�H���Z�K�H�Q�������L�V���D�S�S�U�R�D�F�K�L�Q�J���W�R���������,�Q���&-C 
�F�D�V�H�����G�D�P�S�L�Q�J���U�D�W�L�R���U�H�D�F�K�H�V���P�D�[�L�P�X�P���Y�D�O�X�H���D�W������� �������������)�R�U���O�R�Q�J�H�U���Q�D�Q�R�W�X�E�H���O�H�Q�J�W�K�����O�R�F�D�O���D�Q�G���Q�R�Q�O�R�F�D�O��
damping ratios have very close values, since bigger nanotube length reduces the nonlocal effect. 

4. Conclusions 

Free longitudinal vibration of damped nanotube with attached a viscous damper is investigated in the 
present study. Effects of some parameters like dimensionless damping coefficient (D), nonlocal 
�S�D�U�D�P�H�W�H�U�� ���—������ �D�W�W�D�F�K�P�H�Q�W�� �S�R�L�Q�W�� �R�I�� �G�D�P�S�H�U�� �������� �D�Q�G�� �Q�D�Q�R�W�X�E�H��length (L) to the non-dimensional 
frequency (NDF), non-�G�L�P�H�Q�V�L�R�Q�D�O�� �G�D�P�S�L�Q�J�� ���1�'�'���� �D�Q�G�� �G�D�P�S�L�Q�J�� �U�D�W�L�R�� �������� �R�I�� �Q�D�Q�R�U�R�G�� �L�V�� �V�W�X�G�L�H�G����
Following results are obtained from the present study: 
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�x The dimensionless damping coefficient (D) is effected by NDF differently depending on the 
�D�W�W�D�F�K�P�H�Q�W���S�R�L�Q�W���R�I���G�D�P�S�H�U�������������1�'�'���D�O�Z�D�\�V���L�Q�F�U�H�D�V�H�V���Z�L�W�K���L�Q�F�U�H�D�V�L�Q�J���'�� 

�x �7�K�H�� �1�R�Q�O�R�F�D�O�� �S�D�U�D�P�H�W�H�U�� ���—���� �K�D�V�� �D�� �G�H�F�U�H�D�V�L�Q�J�� �H�I�I�H�F�W���R�Q�� �1�'�)�� �Z�K�H�U�H�D�V�� �L�W���K�D�V�� �D�Q�� �L�Q�F�U�H�D�V�L�Q�J��
�H�I�I�H�F�W���R�Q���1�'�'�����$�O�V�R���—���L�V���P�R�U�H���H�I�I�H�F�W�L�Y�H���L�Q���V�P�D�O�O�H�U���Q�D�Q�R�W�X�E�H���O�H�Q�J�W�K�� 

�x NDD reaches a �P�D�[�L�P�X�P���Y�D�O�X�H���D�W������� �����������L�Q���&-�&���F�D�V�H���D�Q�G������� �������L�Q���&-F case.  
�x �1�D�Q�R�W�X�E�H�� �O�H�Q�J�W�K�� ���/���� �L�V�� �H�I�I�H�F�W�L�Y�H�� �R�Q�O�\�� �L�Q�� �Q�R�Q�O�R�F�D�O�� �F�D�V�H�� ���—�� �•�� �������� �1�'�)�� �L�Q�F�U�H�D�V�H�V�� �D�Q�G�� �1�'�'��

decreases with increasing L. 
�x �'�D�P�S�L�Q�J���U�D�W�L�R�����������L�Q�F�U�H�D�V�H�V���Z�L�W�K���L�Q�F�U�H�D�V�L�Q�J���G�L�P�H�Q�V�L�R�Q�O�H�V�V���G�D�P�S�L�Q�J���F�R�H�I�I�L�F�L�H�Q�W�����') in C-F 

case. In C-�&���F�D�V�H�����L�W���U�H�D�F�K�H�V���D���P�D�[�L�P�X�P���Y�D�O�X�H���D�W������� �������������%�L�J�J�H�U���Q�D�Q�R�W�X�E�H���O�H�Q�J�W�K���U�H�G�X�F�H�V��
nonlocal effect. 
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Abstract 

In the present research, vibration and instability of axially moving sandwich plate made of soft core and composite face 
sheets under initial tension is investigated. Single-walled carbon nano-tubes (SWCNTs) are selected as a reinforcement 
of composite face sheets inside Poly methyl methacrylate (PMMA) matrix. Higher order shear deformation theory 
(HSDT) is utilized due to its accuracy of polynomial functions than other plate theories. Based on extended rule of 
mixture, the structural properties of composite face sheets are taken into consideration. Motion equations are obtained 
�E�\���P�H�D�Q�V���R�I���+�D�P�L�O�W�R�Q�¶�V���S�U�L�Q�F�L�S�O�H���D�Q�G���V�R�O�Y�H�G���D�Q�D�O�\�W�L�F�D�O�O�\�����,�Q�I�O�X�H�Q�F�H�V���R�I���Y�D�U�L�R�X�V���S�D�U�D�P�H�W�H�U�V���V�X�F�K���D�V���D�[�L�D�O�O�\���P�R�Y�L�Q�J���V�S�H�H�G����
volume fraction of CNTs, pre-tension, thickness and aspect ratio of sandwich plate on the vibration characteristics of 
moving system are discussed in details. The results indicated that the critical speed of moving sandwich plate is strongly 
dependent on the volume fraction of CNTs. Therefore, the critical speed of moving sandwich plate can be improved by 
adding appropriate values of CNTs. The results of this investigation can be used in design and manufacturing of marine 
vessels and aircrafts. 

Keywords: Vibration analysis; Axially moving; sandwich plate; Nanocomposite face sheets, Initial tension. 

1. Introduction 

The use of sandwich structures in the world is increasingly growing. In today's modern engineering, 
sandwich structures are being used successfully for a variety of applications such as aircraft, wind 
turbine blades, spacecraft, train and car structures, boat/ship hulls boat/ship superstructures and many 
others. This is due to the excellent mechanical properties of these structures (High strength to weight 
ratio, high resistance to impact, flexibility and etc.). Most of sandwich structures are composed of 
three layers: the top layer, middle layer that is called the core and the bottom layer. The core is less 
stiff compared to other two-layer. Hence, selecting the appropriate material for the core and the other 
layer is a significant for optimum design of sandwich structures. Carbon nanotube-reinforced 
composite can be an excellent option for the top and bottom layers due to the high stiffness and the 
other supreme properties. In this regard, study on vibration and instability of sandwich structures 
which are reinforced by carbon fibers have been conducted by many researchers that some of them 
are presented below. 

Thostenson and Chou [1] have modelled the elastic properties of carbon nanotube-reinforced 
composite. Investigation of the structure/size influence of carbon nanotubes on the elastic properties 
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of nanotube-based composites is the main objective of their research. Zhou et al. [2] analyzed the 
static and free vibration of carbon nanotube-reinforced composite plates using finite element method 
with first order shear deformation plate theory (FSDT). They have studied on the influences of the 
volume fractions of carbon nanotubes and the edge-to-thickness ratios on the bending responses, 
natural frequencies and mode shapes of the plates. Also, Lei et al. [3] have done similar work before, 
but they used the element free kP-Ritz method in thermal environment. Bending behavior of 
functionally graded carbon nanotube reinforced composite (FG-CNTRC) plate embedded in thin 
piezoelectric layers subjected to mechanical uniform load is investigated by Alibeigloo [4]. He 
applied simply supported boundary conditions on plate and used three-dimensional elasticity theory 
to analyze bending behavior of composite plate. 

In recent years, with the advance of industry, there was a need for structures with multiple 
capabilities simultaneously. One of the requirements was answered by the discovery of sandwich 
structures. Thus, researchers have been working in this field. Nayak et al. [5] investigated free 
vibration analysis of composite sandwich plates bas�H�G�� �R�Q�� �5�H�G�G�\�¶�V�� �K�L�J�K�H�U-order theory. Using this 
theory that they have provided, it can be calculated the natural frequencies of isotropic, orthotropic, 
and layered anisotropic composite and sandwich plates. Utilizing radial basis collocation function, 
Ferreira et al. [6] analyzed the static, buckling and vibration responses of the plate. Khalili and 
Mohammadi [7] used improved high-order sandwich plate to analyze the free vibration of sandwich 
plates with FG face sheets. The material properties of FG face sheets and core are considered to be 
temperature-dependent by a third-order function of temperature. Recently, Sahoo and Singh [8] 
proposed a new trigonometric zigzag theory to analyze the static analysis of laminated composite and 
sandwich plates. They assumed shear strain shape function for non-linear distribution of in-plane 
displacement across the thickness. Thai et al. [9] presented a new first-order shear deformation 
theory for functionally graded sandwich plates composed of isotropic core and functionally graded 
face sheets. They approved that the presented theory is accurate in predicting the bending, buckling 
and free vibration responses of FG sandwich plates. In another work, Plagianakos and Papadopoulos 
[10] presented coupled higher-order layerwise piezoelectric laminate mechanics. Their developed 
model was applicable to predict the static electromechanical response of composite and sandwich 
composite plates subjected to static mechanical loads and/or electric voltages. Natarajan et al. [11] 
have attempted to achieve an efficient solution for the bending and free vibration analysis of 
sandwich plates with CNT reinforced composite face sheets. For this purpose, they have used 
QUAD-8 shear flexible element developed based on higher-order structural theory. This theory 
considered the possible discontinuity in slope at the interfaces layers, the realistic variation of the 
displacements through the thickness, and the thickness stretch effects on the transverse deflection. 
Kheirikhah et al. [12] carried out biaxial buckling analysis of soft-core composite sandwich plates. In 
this way, they employed third-order plate theory for face sheets and quadratic and cubic functions for 
transverse and in-plane displacements of the core, respectively. Moreover, analytical solution has 
been presented for sandwich plates with simply supported boundary conditions under biaxial in-
�S�O�D�Q�H���F�R�P�S�U�H�V�V�L�Y�H���O�R�D�G�V���X�V�L�Q�J���1�D�Y�L�H�U�¶�V���V�R�O�X�W�L�R�Q�� 

Axially moving beams and plates have attracted many authors. The geometrically nonlinear 
dynamics and stability of an axially moving plate is presented by Ghayesh et al. [13]. In their study, 
plate is placed under an out-of-plane incitement load and the frequency�±response curves of the 
system are plotted. Also, Dong Yang et al. [14] have been working on the previous thread. To solve 
the differential equations governing the problem, they have used both the Galerkin method and 
differential quadrature method. In the case of free vibration analysis of axially moving viscoelastic 
plates, Hatami et al. [15] and Marynowski [16] have studied. However, each of them has used 
different models for their work. Marynowski and Grabski [17] have investigated dynamic analysis of 
an axially moving plate subjected to thermal loading using the extended Galerkin method the. In 



A. Ghorbanpour Arani, E. Haghparast, H. BabaAkbar Zarei��

41 
 

addition, they have been examined the effects of transport speed, the thermal critical loading and 
axial tension on dynamic behavior of axially moving aluminum plate. 

Despite mentioned researches, vibration and instability analysis of axially moving sandwich plate 
under initial tension using HSDT is a novel topic that cannot be found in literature. To the best of 
�D�X�W�K�R�U�V�¶�� �N�Q�R�Z�O�H�G�J�H���� �I�R�U�� �W�K�H�� �I�L�U�V�W�� �W�L�P�H���� �D�Q�D�O�\�V�L�V�� �R�I�� �D�[�L�D�O�O�\�� �P�R�Y�L�Q�J�� �V�D�Q�G�Z�L�F�K�� �S�O�D�W�H�� �Z�L�W�K�� �&�1�7�� �I�D�F�H��
sheets is developed in this paper. Material properties of composite plate are obtained based on 
extended rule of mixture. Motions equations are obtained based on energy method and solved by 
means of analytical approach. Influences of various parameters such as moving speed, volume 
fraction of CNTs, pre-tension load, thickness and aspect ratio on instability and critical speed of 
moving composite sandwich plate are discussed in details. To verify the presented method, the 
natural frequencies for stationary sandwich plate have been compared with previous researches. The 
result of this work can be useful to control and improve the performance of axially moving devices 
which are employed in military equipment. 

2. Potential energies of axially moving sandwich plate 

Consider a rectangular sandwich plate with length (a), width (b) and thickness ( ) 
which is shown in Fig.1. The top and bottom layers are made of carbon nanotube-reinforced 
composite plate. The carbon nanotube is distributed uniformly in the x direction. The Cartesian 
coordinate system is selected for this problem. x and y axes are located in the mid-plane and z axis 
located along the thickness direction. Sandwich plate is moving along the x direction with the 
constant velocity V. 

 
Fig. 1. Schematic figure of axially moving sandwich plate with CNT reinforced face sheets.��

The following assumptions have been used to derive motion equations [18 and 19]: 

�x The core thickness is larger and softer than the top and bottom layer.  

�x The core is fully bonded with the top and bottom layers. Thus, core and the top layer have the 
same displacement in ( ) as well as the core and the bottom layer in ( ), 

�x No slipping happens at the interfaces between the three layers of the sandwich plate. 

Because the core is made of a soft material, to increase the accuracy of results a higher-order theory 
will be used. According to this theory, the displacement field of the sandwich plate can be expressed 
as [20]: 
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(1)��

in which, , and  ( and ) are the unknowns of the displacement 

components of the sandwich plate. In this manner, eleven displacements are unknowns. 

The linear von-Karman strain-displacement relations can be defined as: 

 
 

 

 

 

 

 

 
(2) 

 
where ( and ) is strain of ith layers. It is obvious that all layers have the 

same strain due to considering similar displacement field for all of them. The constitutive equations 
for sandwich plate can be obtained as [12]: 
 

 (3) 

 
where and  ( and ) are stress and the stiffness coefficient matrix of ith 

layers, respectively. In this paper, the stiffness coefficients is defined for plain strain problems with 
isotropic core ( ), orthotropic top and bottom layers ( ). Also, the extended rule of mixture is 
used to calculate mechanical properties of CNTRC face sheets [12]: 
 

 

 

 (4) 

 
where: 
 

 (5a) 
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 (5b) 

 (5c) 

 
The total potential energy consists of two factors, bending and elongation. Thus, it can be written as: 
 

 (6) 

 
where  and  represent potential energy due to bending and elongation, respectively, and 
defined as [21]: 
 

 (7a) 

 (7b) 

  

in which, represent the uniform initial stress along the x direction. Hence, it is neglected the shear 
stress and the normal stress of the uniform initial stress in the y direction. 

3. Kinetic energy 

The velocity vector ( ) for axially moving sandwich plate with constant velocity C can be 
expressed as follows [13]: 

 
 (8) 

 
Thus, the kinetic energy of the sandwich plates is given by: 
 

 (9) 

 
where and represent kinetic energy and density of ith layers, respectively. 

4. �0�R�W�L�R�Q���H�T�X�D�W�L�R�Q�V���E�D�V�H�G���R�Q���+�D�P�L�O�W�R�Q�¶�V���S�U�L�Qciple 

�%�D�V�H�G���R�Q���+�D�P�L�O�W�R�Q�¶�V���S�U�L�Q�F�L�S�O�H����equations of motion for axially moving sandwich plate are derived as 
[21]: 

 

 (10) 
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Substituting Eqs. (7a), (7b) and (9) into Eq. (10), the coefficients 
of  and  can be obtained as follows: 

 

 

(11a) 

  

(11b) 

 

(11c) 
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(11d) 

 

(11e) 

 

(11f) 
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(11g) 

 

(11h) 

 

(11i) 
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(11j) 

 

(11k) 

 

where , and are defined for  top, core and bottom layers, respectively, as follows: 

 

 (12) 

5. Analytical Solution 

The analytical solution of Eqs. (11) exists for the simply-supported axially moving rectangular 
sandwich plate with composite face sheets. In this approach, the displacements are considered as 
�I�X�Q�F�W�L�R�Q�V�� �Z�K�L�F�K�� �V�D�W�L�V�I�\�� �D�W�� �O�H�D�V�W�� �W�K�H�� �Y�D�U�L�R�X�V�� �J�H�R�P�H�W�U�L�F�� �E�R�X�Q�G�D�U�\�� �F�R�Q�G�L�W�L�R�Q�V���� �%�D�V�H�G�� �R�Q�� �1�D�Y�L�H�U�¶�V��
procedure, the solution of the displacement variables can be expressed in the following forms [15]: 

 (13) 
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Substituting above relations into Eqs. (11) lead to final equations as a matrix form: 

 

 (14) 

 

in which,  is related to external thermal or mechanical loads. It should be noted that in the 
case of free vibration  are assumed to be zero. The arrays of matrix are obtained from 

Eqs. (11) and (13). 

6. Numerical results and discussion 

In this section, effects of various parameters such as volume fraction of CNTs, axially moving speed, 
aspect ratio and thickness on the vibration characteristics of axially moving sandwich plate with 
composite face sheets are discussed in details. In the present study, Titanium alloy (Ti-6Al-4V) is 
considered for the homogeneous core. Poly methyl methacrylate, referred to as PMMA, is selected 
for the matrix of composite face sheets inside CNTs fibers. The effective material properties of 
CNTs, Ti-6Al-4V and PMMA are presented in Table 1 and 2. It should be noted that 

and for the case of , and for the 

case of  , and  and for the case of  �����0�R�U�H�R�Y�H�U�����L�W�¶�V��
assumed that  and  according to Wang and Shen [22]. 

Table 1. Mechanical properties of SWCNT with 10 [22]. 
Temperature 

(K)      

300 5.6466 7.0800 1.9445   
500 5.5308 6.9348 1.9643   
700 5.4744 6.8641 1.9644   

Table 2. Mechanical properties of PMMA and Ti-6Al-4V [22]. 
Material    

PMMA 3.52-0.0034T 1150 0.34 
Ti-6Al-4V  4429 0.29 

Dimensionless parameters are defined to obtain dimensionless results: 
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 (15) 

 

Fig. 2 illustrates the influence of volume fractions of CNTs on the dimensionless frequencies of 
axially moving sandwich plate. This figure shows that increasing volume fractions of CNTs leads to 
increase stiffness of sandwich plate and consequently the frequencies of moving system increase. In 
�D�G�G�L�W�L�R�Q���� �L�W�¶�V��evident that increasing from 0.17 to 0.28 not considerably affected the natural 
frequencies of moving system, especially at lower aspect ratios. Moreover, it can be observed that 
the frequencies moving system increase with increasing aspect ratios of sandwich plate. 

 

 

Fig. 2. Dimensionless frequency versus aspect ratio of sandwich plate for different volume fractions of 
CNTs. 

The real part of dimensionless frequency versus dimensionless axially moving speed for different 
core thickness is depicted in Fig.3. As can be observed, diminishes with increasing . These 
physically proved that the system is stable and the small moving speed does not result in damping 
behavior. For zero resonance frequency, axially moving sandwich plate becomes unstable due to the 
divergence via a pitchfork bifurcation and the corresponding moving speed is called the critical 
speed. Therefore, with increasing moving speed, system stability decreases and became susceptible 
to buckling. It is obvious that increasing core thickness causes to increase strength of sandwich plate 
and consequently the frequencies of system increase. 

 

 

Fig. 3. Dimensionless frequency versus dimensionless moving speed of sandwich plate in different 
values of core and face sheets thickness. 
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The influences of volume fractions of sandwich plate on dimensionless frequencies versus 
dimensionless thickness parameter are demonstrated in Fig.4. This figure approved that increasing 
thickness of sandwich plate leads to increase frequencies of moving system. In addition, the effect of 
CNTs reinforcement is more significant at thicker sandwich plate.  Also, it can be found that the 
frequencies of sandwich plate which is reinforced by 0.17 and 0.28 volume fractions of CNTs are 
similar. So, in this study  is selected for the face sheets of sandwich plate. 

 

 

Fig. 4. The influence of CNTs volume fraction on dimensionless frequency versus dimensionless thickness 
ratio of sandwich plate. 

As mentioned ago, SWCNTs is selected as a reinforcement of face sheets of sandwich plate. The 
mechanical properties of CNTs at different temperatures are adopted from Wang and Shen (2012). 
Fig. 5 presents the effect of temperature on vibration frequencies of moving sandwich plate. As can 
be seen, increasing temperature leads to increase the frequencies of moving composite plate, 
especially at higher thickness of plate. 

 

��

Fig. 5. The effect of temperature on dimensionless frequencies of axially moving sandwich plate versus 
dimensionless thickness ratio of sandwich plate. 

Fig.6 shows the influences of temperature changes and volume fractions on dimensionless 
frequencies versus dimensionless core thickness parameter, simultaneously. This figure approved 
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that volume fractions of CNTs and temperature changes are a significant parameters which are 
changed frequencies of moving sandwich plate, considerably. 

 

 

Fig. 6. Dimensionless frequency versus dimensionless core thickness of sandwich plate in different 
temperature and volume fractions of CNTs. 

��

The effect of moving speed of sandwich plate on dimensionless frequency versus dimensionless 
aspect ratio is demonstrated in Fig. 7. It can be found from this figure that the values of critical speed 
in square plate are lower than rectangular plate. Moreover, increasing moving speed leads to increase 
instability of sandwich plate and consequently the frequencies decrease. 

 

��

Fig. 7. The effect of moving speed on dimensionless frequency versus aspect ratio of sandwich plate. 

Dimensionless frequencies versus dimensionless initial tension in different moving speeds are 
demonstrated in Fig.8���� �,�W�¶�V�� �F�R�Q�F�O�X�G�H�G�� �W�K�D�W�� �L�Q�F�U�H�D�V�L�Q�J�� �S�U�H-tension leads to decrease dimensionless 
frequency of sandwich plate. In addition, the influence of initial tension in axially moving plate with 
higher moving speeds is more considerable than stationary plates. 
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��

Fig. 8. The effect of moving speed on the dimensionless frequency versus dimensionless initial tension. 

Fig.9 illustrates the effect of vibration modes on dimensionless frequencies versus dimensionless 
moving speed of sandwich plate. It is evident that the critical speed and frequencies of sandwich 
plate in third mode are higher than the first mode. 

 

��

Fig. 9. The effect of vibration modes on the dimensionless frequency versus dimensionless moving speed of 
sandwich plate. 

In order to examine the reliability of the presented method, the results of this method are compared 
with the work by Wang and Shen (2012). For this purpose, sandwich plate with CNTRC face sheets 

is considered. Non-dimensional natural frequencies are obtained by  where 

and �U�H�S�U�H�V�H�Q�W�V�� �P�D�V�V�� �G�H�Q�V�L�W�\�� �D�Q�G�� �<�R�X�Q�J�¶�V�� �P�R�G�X�O�H�� �R�I�� �F�R�U�H�� �O�D�\�H�U�� �D�W T=300 K. As can be seen, 
there are good agreement between the results of present study and their approach.   

Table 3. Comparison between non-dimensional natural frequencies of sandwich plate with CNTRC face 
sheets (C=0, a/b=1, b/h=20) 

T= 300 K    

 
0.17 0.28 0.17 0.28 0.17 0.28 

Present 4.5577 4.5673 4.2701 4.2710 3.7173 3.7203 
Ref. [22] 4.5887 4.5871 4.2642 4.2939 3.7320 3.7378 
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7. Conclusion 

Based on HSDT, vibration analysis of axially moving sandwich plate with composite face sheets was 
developed for the first time. PMMA was selected as a matrix composite face sheets inside CNTs 
fibers.  Extended rule of mixture was utilized to obtain structural properties of composite face sheets. 
Considering simply supported boundary condition, the motion equations were obtained using 
�+�D�P�L�O�W�R�Q�¶�V�� �S�U�L�Q�F�L�S�O�H�� �D�Q�G�� �V�R�O�Y�H�G�� �E�\��analytical solution. It was found that vibrating behavior of 
moving sandwich plate was strongly dependent on moving speed, so that, with increasing moving 
speed, system stability decreases and became susceptible to buckling. In addition, increasing small 
amount in volume fraction of fibers led to increase frequencies of sandwich plate, considerably. 
Comparison between natural frequencies of this study and the work which was done by Wang and 
Shen [22] confirmed the accuracy of presented results. The results of this study is hoped to be used in 
optimum design of aircrafts and military equipment. 
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Abstract 
 
Free vibration analysis of orthotropic composite annular plate is investigated. First-order shear deformation 
theory (FSDT) is used for equation of motion. Two different kernels such as Regularized Shannon delta (RSD) 
kernel and Lagrange delta sequence (LDS) kernel are used. The method of discrete singular convolution (DSC) 
is used for numerical simulation of governing equations to obtain the frequency values. It is shown that the 
convergence and accuracy of the DSC method is very good for vibration problem of orthotropic annular plate.  
 
Keywords: Frequency, annular plate, discrete singular convolution, composite laminated. 
 
 
 
1. Introduction  
 
Free vibration analyses of shells and plates have widely studied by this time. Frequencies 
values of shell structures have major importance for their design in different fields. In 
literature, it is possible to find a few books on analysis and design of these structures [1-11]. 
Some important studies have been listed in references [9-42]. 
 
This paper is summarized in a few sections. In section 2, just main formulations for truncated 
conical shells and annular plates are �J�L�Y�H�Q�� �Y�L�D�� �7�R�Q�J�¶�V�� �>�����@�� �S�D�S�H�U. The method of discrete 
singular convolution (DSC) is given in section 3. DSC solution for free vibration of 
orthotropic annular plates with is briefly defined in section 4. Results are listed in Section 5. 
Finally, a conclusion is located at the end of the paper.  
 

 
2. Fundamental Equations 
 

Geometry and parameters of conical shells and annular plates are depicted in Fig. 1.  
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Fig. 1. Demonstration and notation of conical shell and annular plate 
 

The equations of motion are [43] 
 
 

    (1) 

   (2) 

    (3) 

   (4) 

    (5) 

 
Moment and forces components can be defined as: 
 
 

     (6)

      (7) 
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     (8) 

 
For �D�Q�Q�X�O�D�U���S�O�D�W�H�V�����.� ���������M=360) based on the FSDT the differential equations of motion can 
be defined in each direction: 
 

 

 

 

   (9) 
 

 

 

 

  (10) 

 

 

 

    (11) 

 

 

 

   (12) 
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  (13) 

 
 

3. Discrete Singular Convolution (DSC) 
 

The method is originally introduced by Wei [44-47]. �$�I�W�H�U���W�K�H�� �:�H�L�¶�V�� �S�D�S�H�U, the method 
of DSC have been used in many problems related to static, dynamic, free vibration and 
buckling analysis of structures [48-74]. A singular convolution F can be formulated as [44] 

 

     (14) 

In the study, regularized Shannon kernel (RSK) and Lagrange kernels are used.  
Regularized Shannon kernel (RSK)   
RSK kernel can be listed below [45-47]  
 
 

; �V >0   (15) 

 
Gaussian envelope is showed by symbol �V .  In discrete form, any derivation can be written as 
 
 

;   (n=0,1,2,...,)  (16) 

 
 

 Lagrange delta sequence (LDS) kernel 
LDS kernel is defined for i � �����������«�� N-1 and j = -M���«��M is given by [44-50] 
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   (17) 

 
In this case, the first and second order derivatives are given as 
 
 

    (18) 

 

   (19) 

 
4. Results  
 
In this section, two examples are solved via two different kernels such as Regularized 
Shannon delta (RSD) kernel and Lagrange delta sequence (LDS). Frequency values for 
annular and circular plates have been obtained and results are listed in Tables 1-2 for 
orthotropic case. Results are obtained for clamped cases for annular and circular plates. Both 
kernels are useful for numerical discretization via DSC. It is shown that the 9*7 grids are 
efficient for best convergence. 

 
Table 1. Frequency values  ) for orthotropic annular plate with C-C 

edges (R1/R2=2; R1/h=1000; E�T=70 GPa, �Xc=0.3, �Uc=5700 kg/m3, Er=1400 GPa, �Xr=0.3, �U 
=7850 kg/m3)  

 
Modes Present DSC Results- RSD kernel  
(�V=2.8) 7�î�����0� 14) 9�î�����0� ������ 9�î�����0� ������ 11�î�����0� ������ 

1 4.52420 4.52413 4.52413 4.52413 
2 4.74045 4.74038 4.74038 4.74038 
3 5.31453 5.31449 5.31442 5.31442 
4 6.10096 6.10090 6.10085 6.10085 
5 7.04989 7.04978 7.04976 7.04976 

Present DSC Results- LDS kernel 
(�V=2.8) 7�î����M=14) 9�î�����0� ������ 9�î�����0� ������ 11�î�����0� ������ 

1 4.52443 4.52438 4.52438 4.52438 
2 4.74059 4.74053 4.74051 4.74051 
3 5.31504 5.31493 5.31493 5.31493 
4 6.10103 6.10098 6.10094 6.10094 
5 7.05068 7.05016 7.05003 7.05003 
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Table 2. Frequency values  ) for orthotropic circular plate with 

clamped edges (R1/h=1000; E�T=70 GPa, �Xc=0.3, �Uc=5700 kg/m3, Er=2800 GPa, �Xr=0.3,  
�U =7850 kg/m3)  

 
Modes Present DSC Results- RSD kernel  
(�V=2.8) 9�î�����0� ������ 9�î�����0� ������ 11�î�����0� ������ 11�î�������0� ������ 

1 2.72081 2.72081 2.72081 2.72081 
2 3.37236 3.37236 3.37236 3.37236 
3 4.50756 4.50753 4.50753 4.50753 
4 4.98188 4.98182 4.98182 4.98182 
5 5.60235 5.60227 5.60227 5.60227 

Present DSC Results- LDS kernel 
(�V=2.8) 9�î�����0� ������ 9�î�����0� ������ 11�î�����0� ������ 11�î�������0� ������ 

1 2.72086 2.72086 2.72086 2.72086 
2 3.37244 3.37240 3.37240 3.37240 
3 4.50767 4.50760 4.50760 4.50760 
4 4.98195 4.98190 4.98188 4.98188 
5 5.60242 5.60236 5.60234 5.60234 

 
 
5. Discussions 
 
In this paper discrete singular convolution method via FSDT shell theory is used for free 
vibration of annular and circular plates with orthotropic case. Two kernels namely 
Regularized Shannon delta (RSD) kernel and Lagrange delta sequence (LDS) kernel are used. 
The effects of grid numbers and kernel types on results have been investigated.  
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Abstract 

Heat-induced, pressure-induced, and centrifugal force-induced axisymmetric exact deformation and stresses in a thick-walled 
spherical vessel, a cylindrical vessel, and a uniform disc are all determined analytically at a specified constant surface 
temperature and at a constant angular velocity. The inner and outer pressures are both included in the formulation of annular 
structures made of an isotropic and homogeneous linear elastic material. Governing equations in the form of Euler-Cauchy 
differential equation with constant coefficients are solved and results are presented in compact forms.  For discs, three different 
boundary conditions are taken into account to consider mechanical engineering applications. The present study is also 
peppered with numerical results in graphical forms.  

Keywords: Thermo-Mechanical, Elasticity solution, Exact solution, Rotating disc, Pressure vessel, Linear elastic 

1. Introduction 
 
 
Annular structures such as cylindrical or spherical vessels including discs are essential structural elements 
mainly made of an isotropic and homogeneous material. (Fig. 1). From those vessels may store gases, 
vapors, and liquids at various pressures and temperatures. The pressure is obtained from an external 
source, or by the application of heat from an indirect or direct source. That is a pressure vessel is mostly 
subjected simultaneously to both the mechanical and thermal loads. In a pressure vessel design 
determination of both the displacements and stresses is of great importance. If the material of the vessel 
is isotropic and homogeneous then those may be calculated analytically. By choosing appropriate 
parameters, an analytical solution also allows the optimization of the design parameters of a vessel 
structure.  
 
Apart from vessels, a rotating disc is also one of the essential annular structural component. They are 
commonly used in a wide variety of engineering applications including space structures, electronic 
components and rotating machinery. Axisymmetric elasticity solutions to the both mechanical and thermal 
stress analysis of rotating discs have long been studied in the available literature.  However, most of those 
studies modelled the thermo-elastic behavior of a disc with boundary condition which commonly proper 
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for the cylindrical vessel having stress-free surfaces (Fig. 1c). But, in mechanical engineering applications 
rotating discs are commonly attached a rigid shaft at the center (Figs. 1d-e). 
 
 

 
 
 

 
 

(a) Sphere 

 

 

 
 

 

b) Infinite cylinder c) Disc / Circular annulus 

 
 

 

 
 

 

d) Disc having rigid case at the outer 
surface 

e) Disc mounted a shaft at its 
center 

 
Fig. 1. Rotating annular structural geometries 
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As is well known in the thin-walled structure analysis the uniform stress distribution along the thickness 
is taken for granted. Apart from this, the effect of the radial stress on the equivalent stress is neglected. 
That is the radial stress due to either/both inner or/and outer pressures are assumed to be virtually zero.  
 
However, in thick-walled structures, both the radial and hoop stresses play a role in the vessel design. It 
is obvious that the distribution of the stresses along the radial coordinate are no further uniform in thick-
walled annular structures.  
 
In the literature, the most number of studies are conducted with such structures subjected to just internal 
pressure. However, there are some types of structures such as submarine structures and vacuum tanks for 
which the predominant pressure is assumed to be the outer pressure and just the effect of this external 
pressure is considered in their analysis. In the present study effects of both the inner and the outer pressures 
are formulated analytically for each type of annular structures. 
 
In some thermal studies, for the aim of simplicity, the distribution of the temperature along the radial 
coordinate is assumed to be linear without solving related Fourier heat conduction differential equation in 
thick-walled annular structures. As might be expected, this not reflects the true thermal behavior of such 
structures. The appropriate temperature distribution, which is obtained in terms of a logarithmic function,   
is identically the same but not linear for discs and cylindrical structures (Fig. 2). The temperature 
distribution in spheres shows a hyperbolic variation.  In the present study, the exact temperature 
distributions obtained by the solution of Fourier heat conduction differential equation are used to study 
the thermo-elastic behaviors of such structures. 

 
Fig. 2. Temperature distribution in thick-walled annular structures 
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Apart from the above, one may also be confused undoubtedly when studying the disc and cylindrical 
geometries. Discs are modeled in the case of plane stress assumption while the cylinders are modeled 
under plane-strain assumptions. The strain-displacement relations together with the equilibrium equation 
are identically the same under axisymmetric conditions for two annular structural types. As stated above, 
the temperature distribution of two types of structures are also one and the same. In spite of those, there 
are differences in their stress-strain relations that is in Hooke’s law. This, sometimes, may cause some 
misperceptions in the formulation. In the present study the main differences in the formulation are 
demonstrated clearly.   
 
Finally, one may spend relatively much time to obtain formulas with the same notation for thermo-
mechanical behavior of such structures. In this respect, this study offers a concise and a complete study. 
  
The subject of the present work is to form an infallible all-in-one source for the linear elastic behavior of 
such structures made of an isotropic and homogeneous material under thermal and mechanical loads (Fig. 
1).  Centrifugal forces, internal and external pressure forces are all classified as mechanical loads. To do 
so, governing equations which are second degree order non-homogeneous differential equations of 
constant coefficients are first derived from the elasticity field equations, and then they are solved 
analytically to obtain thermal and mechanical deformation and stresses.  In this study exact thermo- 
mechanical analysis of this types of structures are carried out according to the superposition principle since 
small displacements are assumed. That is, each elastic quantity, either displacement or stress, is first 
determined separately for the related loading type. The resultant elastic quantity is then determined as a 
sum of each contributions. 
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2. Spherical Vessels  

In a spherical coordinate system, � "# $# %� # relations between the strain and displacement components for 
spherically symmetric case are as follows (see Notations) 
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where prime symbol denotes the first derivative of the quantity with respect to the radial coordinate. It 
may be noted that the properties in $ and % directions are identical for axisymmetric hollow spheres. 
Denoting the rise in temperature with respect to the temperature where stress value in the material is zero 
by ¥-= TTrT )(D , Hooke’s law for a sphere made of an isotropic and homogeneous material is given by 
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Equilibrium equation for a spherical vessel rotating at a constant angular velocity is 
 

r
r

r rr
2)(

2
)(' rwsss q -=-+                                                                (5) 

 
Eqs. (2), (3), and (5) are referred to as the field equations of the elasticity. Substituting Eq. (2) into Eq. 
(3), and then successive substitution of Eq. (3) together with the first derivative of the radial stress into the 
equilibrium equation (5), the governing equation called Navier equation in terms of radial displacement is 
obtained as follow 
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This is a second order non-homogeneous Euler-Cauchy type differential equation with constant 
coefficient. Its solution consists of the sum of its homogeneous and particular solutions. Since small 
displacements are assumed, the superposition principle holds. 
 
To consider just mechanical loads due to either internal or external pressures, the following �5 �  61 �
7�  is solved with the boundary conditions [1]:  � � � 8� � (9 � , and � � �:� � (9 ; . 
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In order to account for just the rotation as a mechanical load �9 � � 9 ; � 7<  61 � 7�  , Eq. (8) is solved 
under the boundary conditions:  � � � 8� � 7  and  � � �:� � 7 . 
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After determination of the temperature distribution along the thickness of the sphere, the thermo-elastic 
analysis is merely taken into consideration by the following [2-6] under the boundary conditions: � � � 8� �
7 < � � �:� � 7 . 
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As stated above, before conducting the thermo-elastic analysis, a thermal analysis which defines the 
distribution of the temperature along the radial coordinate is required. Under the steady-state condition, in 
the absence of heat generation, temperature distribution along the thickness of the spherical vessel is found 
from the solution of the following heat conduction equation (Fourier’s equation) with the first kind 
boundary conditions (Dirichlet):   aTaT =)(  and bTbT =)( . 
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Solution of the above is found as 
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Eq. (9), now, takes the following form with Eq. (11)  
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Solution of the above inhomogeneous equation with the boundary conditions, � � � 8� � 7 # and � � � : � � 7 , 
gives the following   
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Compact forms of the thermo-elastic radial displacement, radial and hoop stresses are 
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Nayak et al. [4] offered the following thermal stresses for hollow spheres. 
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Nayak et al. [4] stated that from References [5-6] one can easily verify that Eq. (15) is indeed the 
expression for radial and tangential stresses for an isotropic and homogeneous thick spherical vessel. It is 
also readily verified that Nayak et al.’s [4] equations in (15) and present equations in (14) are identical. 
For the mechanical load due to internal and external pressures, analytical solution is found as 
 

! � �"� �
Q&

" & � Q 2"  

 

� �  �
Q22�.Q &�(- � /� � Q 2" H�- � ./��

" H  

 

� �  �
Q22�Q& ( Q &/ � Q 2" H�- � ./��

" H  

 (16) 

Q2 � (
I &4) 34�2 JI � ER? �; ER@J

� � &D32�� 4�2 �� � E�; E�
 ; Q& �

� E; E�&4 ) 34�2��R ? �R @�

&��D�2��4�2��� E�; E�
 



V. Y�ld�r�m 

73 
 

 
 

 
Compact forms of the above in which radial and hoop stresses coincide with Roark’s formulas [2] are. 
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Fig. 3. Displacements and stresses induced by mechanical loads 



V. Y�ld�r�m 

74 
 

  

  
Fig. 4. Displacements and stresses induced by thermal loads 
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Fig. 5.  Total and equivalent stresses for thermo-mechanical loads  
 
Analytical solutions for mechanical load due to just rotation at a constant angular velocity is  
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For a numerical example, geometrical and material properties together with boundary conditions of the 
sphere are assumed to be [4]: 
 

Co/11058.10 6  -=a;  MPayield 700=s;    29.0=n;    GPaE 2.209= 

mb 0.1=;ma 8.0=; srad /100=w; 0=bp ;MPapa 200=; CTb
o0=; CTa

o27= 
 
Variation of the displacements and stresses induced by separate mechanical and thermal loads are 
illustrated in Figs. 3-4. From these figures it is observed that the radial displacement and hoop stresses 
which are tension in nature decrease with increasing ab/  ratios for each individual mechanical loads. The 
maximum radial stress which is compression in nature is observed at the inner surface for mechanical 
pressure loads, and at the vicinity of the middle surface as being tension in nature for mechanical rotational 
loads. Variation of the displacements and stresses induced by thermal loads is illustrated in Fig. 4 at 
different temperatures of the inner surface. From the figure it is observed that the radial displacement 
increases with increasing ab/  ratios and with increasing inner surface temperature. The maximum radial 
stress in compression is observed at the vicinity of the middle surface and increases with increasing surface 
temperature differences.  Tangential stress varies from compressive to tensile for thermal load, from inside 
surface to outside. Considering superposition principle, variation of the thermo-mechanical stresses and 
equivalent stress in Eq. (19) which is given by [4] based on the Von-Mises criteria is illustrated in Fig. 5. 
It is observed that the equivalent stress gradually decreases in the radial direction, from inside surface to 
outside for thermo- mechanical loads and sets up tensile stresses. From this figure it is also observed that 
the equivalent stress exceeds the yield strength at the inner surface, 5.3/ =ayield ps . 
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3. Cylindrical Vessels 
 
In a polar coordinate system, �"# $�, axisymmetric relations between the strain and displacement 
components are as follows (Fig. 1) 
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Stress-strain relations for a cylindrical structure are given in the form of 
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Equilibrium equation for a cylindrical vessel or a disc rotating at a constant angular velocity, is 
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Substituting Eqs. (20) into Eqs. (21), and then successive substitution of Eqs. (21) with the first derivative 
of radial stress into the equilibrium equation in (22), a second order non-homogeneous Navier differential 
equation which governs the thermo-mechanical behavior of a cylindrical vessel is obtained as follows 
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In order to study thermo-elastic analysis alone of such structures, let’s neglect the rotation together with 
inner/outer pressures  
 

! � ''(r) �
2

�
! �

' � " � (
2

� ) ! � � " � � � - � ./ � 01 ' � " �                                       (24) 
 
Solution of the above equation consists of the sum of its homogeneous and particular solutions. To get the 
particular solution, first, the temperature distribution due to the temperature difference between the 
cylinder surfaces at specific temperatures is required. Let’s consider the Fourier heat conduction equation 
in polar coordinates for cylinders or discs 
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Temperature distribution along the thickness of a cylinder or a disc is found from the solution of the 
above equation with the first kind boundary conditions: aTaT =)(     and   bTbT =)( .   
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It may be noted that the temperature distribution in both cylinder and disc is govern by the same differential 
equation under the same boundary conditions. Considering the temperature distribution in Eq. (26) and its 
derivative, Navier equation for the thermo-elastic analysis of a cylindrical vessel made of a homogeneous 
and isotropic material is achieved as follows 
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In the present work, the above differential equation is solved for the boundary conditions: � � (a)=0  and  
� � (b)=0 .  Solution of Eq. (27) is obtained as follows 
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In equations (28) stress formulas coincides with the literature [7]. However an error is found in the 
definitions of those stresses in Reference [8]. Solutions in Reference [8] is unfortunately employed in 
Reference [9]. The analytical formulas, again derived in the present study, for the radial displacements 
and stresses due to mechanical loads such as internal/external pressure and rotation at a constant angular 
velocity are presented below for the sake of the completeness of the study. 
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Table 1. Material properties for cylinders 
 

 METALS E (GPa) )3� (kg/m �   k (W/mK) �  (1/K) 
Metals Titanium (Ti-6Al-4V) 122.557 2370 0.29 13.723 6-7.579x10 

Aluminum (Al) 70 2700 0.3 204 6-23x10 
Nickel (Ni) 199.5 8900 0.3 90.7 6-13.3x10 
Stainless-Steel (SUS304) 201.04 7800 0.3262 15.379 6-12.33x10 

Ceramics )4N3Nitride (Si-Silicon 348.43 4429 0.24 1.209 6-5.8723x10 
)2Oxide (ZrO-Zirconium 116.4 3657 0.3 1.78 6-8.7x10 
)3O2(Al Oxide-Aluminum 393 3970 0.3 30.1 6-8.8x10 

 
For numerical example, geometrical and material properties of the cylindrical vessel are assumed to be:

ma 8.0= ; mb 0.1= . Variation of the displacements and stresses induced by thermal loads at different 
temperature differences is illustrated in Figs. 6-7 for both ceramics and metallic materials whose properties 
are given in Table 1. From these figures it is observed that the characteristics of the curves of the elastic 
quantities are similar for both ceramics and metals since they are both isotropic and homogeneous: The 
radial displacement gradually increases with increasing radial coordinate. The maximum thermo-elastic 
radial displacement is observed at the vicinity of the middle surface. The thermo-elastic radial stresses are 
compression in nature. The maximum hoop stresses are observed at the inner surface of the cylindrical 
vessel. The thermo-elastic hoop stresses are gradually changed their signs from inside surface to the outer 
surface. The numerical values of the hoop stresses are 10-times more than radial stresses. So the hoop 
stresses become leading in the thermo-elastic analysis.  
 

 
 

Fig. 6. Thermo-elastic radial displacement and the radial and hoop stresses for cylindrical vessels 
made of different metallic materials 
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Fig. 7. Thermo-elastic radial displacement and the radial and hoop stresses for cylindrical vessels 

made of different ceramic materials 
 

As expected, in a thermo-elastic analysis, the ceramic materials are more strength to the metallic materials. 
However, thermo-elastic behavior of a titanium-alloy is very similar to a zirconia.  The titanium-alloy 
offers smaller displacements than the zirconia.  
 

  
  

  
  

BC=3 
m! � (a)=0 and ! � (b)=0} 

BC=2 
m! � (a)=0  and  � � (b)=0}  

BC=1 
{ � � (a)=0 and � � (b)=0}  

 
Fig. 8. Boundary conditions considered for discs  
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4. Discs at Different Boundary Conditions 

In a polar coordinate system, �"# $�, axisymmetric field equations are as follows 

0)( =rrqg;            
r
ru

r r )(
)( =qe;       )(')( rur rr =e 

)()1()()( 111111 rTCrCr C r Dalele q +-+=)()()()()( 12111211 rTCCrCr Cr rr Daees q +-+= 
)31( 

)()1()()( 111111 rTCrC rC r Daleel q +-+=)()()()()( 12111112 rTCCrC rCr r Daees qq +-+=    

111112 CC C ln == ;      211 )1( n-
=

E
C 

 
From the above field equations, the following Navier differential equation which governs the thermo-
mechanical behavior of the uniform disc is obtained.  
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� � - � / � 01 ' � " �                                 (32) 

 
As stated above, temperature distribution for both discs and cylindrical vessels obey the same 
differential equations. So, from Eq. (26) the following is rewritten under the first kind boundary 
conditions 
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In order to study thermo-elastic analysis alone of such structures, the rotation is omitted in Eq. (32).  
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In the present work, the above differential equation is solved for each boundary condition given in Fig. 
8 and the results are presented in Table 2. As ease of reference, the analytical formulas in Reference 
[10] for the uniform discs subjected to the mechanical loads are presented for different boundary 
conditions in the Appendix.  

 
For a numerical study, geometrical and material properties of the disc are assumed to be: ma 1.0= ; 

mb 0.1= , GPaE 2.209= ; 29.0=n ; MPayield 700=s ; C  o/11058.10 6-=a . Variation of the 

displacements and stresses induced by thermal loads is illustrated in Fig. 9 under different boundary 
conditions and for different temperature differences. From Fig. 9 it is observed that the radial 
displacement gradually increases with increasing ab / ratios for BC=1 and BC=2. The maximum 
radial displacement is observed at the outer surface for both BC=1 and BC=2 while it is at the vicinity 
of the middle surface for BC=3. BC=1 and BC=3 present radial stress as compression in nature while 
BC=2 offers radial stress in tension. The maximum radial stress is observed at the inner surface for 
BC=2, at the close to the inner surface for the others. From Fig. 9, for all types of boundary conditions, 
maximum hoop stress is observed at the inner surface of the disc.  Hoop stresses are gradually changed 
their signs from inside surface to the outer surface. 
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Fig. 9. Thermo-elastic behavior of a rotating disc at different boundary conditions 

 
As stated above, some existing formulas in the literature contain some errors. Poworoznek [8] 
conducted an analytical study for cylindrical pressure vessels based on the theory proposed by 
Timoshenko [11]. He suggested some analytical formulas for both hollow cylinders (plain strain) and 
hollow discs (plain stress) for BC=1. 
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Let’s re-consider analytical formulas derived in this study for the radial and hoop stresses for discs 
(Table 2) and cylinders (Eq. (28)) under BC=1. Comparison shows that there are some syntax errors 
in those formulas suggested by Poworoznek [8] as follows 
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Before anything else, it is not proper to get the identical result for the hoop stresses in both plane strain 
and plane stress conditions as in Reference [8] while the radial stresses are found somewhat different 
for cylinders and discs.   The author thinks that there must be some typing errors or some confusion 
between the elastic constants of plane stress and plain stress cases in those formulas in Reference [8]. 

 
To study the thermo-elastic behavior of the uniform discs under plane stress assumption the following 
differential equation should be used (See Eq. (32)). 
 

! � ''(r) �
-
"

! �
' � " � (

-
" & ! � � " � � �- � / ������s����� �01 ' � " �  

(37) 
nl =- StressPlane  

 
Under plane strain assumption, the following differential equation governing the thermo-elastic 
behavior of the cylindrical structures should be used. 
 

! � ''(r) �
2

�
! �

' � " � (
2

� ) ! � � " � � �- � ./ ������s����� �01 ' � " �      
(38) 

n
n

l
-

=- 1StrainPlane  

 
Temperature distributions along the radial direction for both cylinders and uniform discs are identical. 
 

 1�"� �S���T�� ��T U��n � WX"Y2 � Y &                                            (39) 
 
From the above it is revealed that it is possible to confuse easily with the elasticity constants in the 
formulation. The present results for cylinders exactly coincides with the literature [7].  

 
To gain insight into the issue in question, an additional numerical example is performed for both the 
discs and cylindrical vessels having the same inner and outer radii (a=0.5m, b=1m) for BC=1. The 
results are shown in Fig. 10 in a comparative manner by using the same axis-scales. From the overall 
picture the characteristics of the curves are similar to each other. However numerical values of the 
quantities are not the same. For example, the same temperature difference results in higher stresses in 
cylinders than discs. 

 
Finally, it is possible to obtain plane-stress formulas from the plane strain formulas by using 
appropriate coefficients. The converse is also true. In the elementary elasticity theory those coefficients 
are given for    mechanical loads such as rotation and internal/external pressures. For instance, if one 
replace formally G with 

4

2�4
, and  E with 

�

2�4 )  he may get the results for the plain-strain case from the 

plane stress solutions. As it is known G should be replaced formally with 
4

234
, and E is to be replaced 

with 
��23&4�

�234� )  to get the plane stress results from the plain strain solutions. However this does not work 

alone for thermo-elastic analysis. 
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Fig. 10. Comparison of results for discs and cylinders (a=0.5m, b=1m) under BC=1 
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5. Conclusions 
 
In this study thermo-mechanical analysis of annular structures made of a homogeneous and isotropic 
linear elastic material is handled analytically under different boundary conditions. The closed form 
formulas for the radial stress, hoop stress and the radial displacement are derived for each boundary 
condition and for each structural type.  Apart from those, some muddles in the formulation of both 
cylinders and discs are clarified.   
 
For the spherical rotating vessel with 9� � .77 ‡ˆ8# 5 � -77

��T

�
# 1� � k77F# 1 ; � .‰kF , it is 

observed from Figs. 3-5 that  
 

·  Maximum radial displacement occurs at the inner surface for both pressure and centrifugal 
loads while it is located at the outer surface for thermal loads. For the given problem, thermal 
radial displacement are much excessive than mechanical load induced radial displacements. 
 

·  If radial stresses are considered, its maximum value is at the inner surface as in compression 
under pressure loading, at the mid-surface for both centrifugal force and thermal loads. 

 
·  As to the hoop stress, it reaches its maximum value at the inner surface as in tension for 

mechanical loads and it is also maximum at the inner surface as in compression for thermal 
loads. This contributes the almost uniform distribution of the total hoop stress along the 
thickness. 

 
·  The equivalent maximum stress is located at the inner surface due to all loadings, namely 

pressure, centrifugal force and thermal loads.  
  

For the cylinders it is observed from Fig. 6 that the radial displacement progressively increases with 
increasing radial coordinate. The maximum thermo-elastic compressional radial displacement is 
examined at the vicinity of the middle surface. The maximum hoop stresses are watched at the inner 
surface of the cylindrical vessel. The thermo-elastic hoop stresses are in compression at the inner 
surface while they are in tension at the outer surface. The numerical values of the hoop stresses are 
nearly 10-times more than radial stresses. So the hoop stresses are guiding stresses in the thermo-elastic 
analysis.  
 
The thermo-elastic behavior of stress-free discs is very similar to cylindrical vessels. However the 
same inner and outer radius together with the same temperature difference yield higher stresses in 
cylinders than stress-free discs. For other types of discs attached a shaft at its center (for BC=2 and 
BC=3) have much higher hoop stresses at the inner surface as in compression due to thermal loads.  
 
By using the closed-form formulas offered in the present study, such structures may be tailored to the 
user’s need. The author also hopes that this study may form an infallible all-in-one source for the 
readers studying the linear elastic behavior of such structures made of an isotropic and homogeneous 
material under thermal and mechanical loads. 
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APPENDIX: Displacement and stresses of uniform isotropic and homogeneous discs 
subjected to mechanical loads [10] (9� � ŠXX‹" 9"‹ŒŒ!"‹,  9; � •!Ž‹" 9"‹ŒŒ!"‹�    
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Notations 
a, b Inner radius and outer radius, respectively 

21,CC  Integration constants 

ijC  elastic constants in Hooke’s law 

E  Young’s modulus 
9� , 9;  Pressures at inner and outer surfaces, respectively 
r radial coordinate 

aT , bT  temperature at the inner and outer surfaces, respectively 

ru  radial displacement 

re  radial strain 

qe  
tangential strain 

a  thermal expansion coefficient 

qffq ggg   rr ,,
 

engineering shear strain components 

% Azimuthal coordinate 
�  Poisson’s ratio 
j  density of the vessel material 

     rs  radial stress 
     qs  hoop stress 

$ tangential coordinate 
5  constant angular velocity (rad/s) 
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Abstract 

In the current study, the size dependent free vibration of shear deformable functionally graded (FG) nanotubes 
is investigated. The nanotube is modeled as cylindrical shell which contains small scale effects by using the 
nonlocal strain gradient theory. Material properties of the FG nanotube are assumed to be variable along 
thickness direction according to power law distribution. The HamiltonÕs principle is implemented to derive the 
governing equations and boundary conditions. The numerical results are presented for simply supported FG 
nanotube and the influence of different parameters, such as nonlocal parameter, length scale parameter, length, 
thickness and power law index on frequency of FG nanotube are extensively studied. The results reveal that the 
frequency is significantly size dependent.  

Keywords: Nonlocal strain gradient theory, Nanotube, Vibration, Size-dependent, first order shear deformation 
theory.  

1. Introduction 

Offering unique benefits compared to conventional materials, functionally graded materials 
have been found tremendous amount of interest among researchers. The material properties of 
FG materials are changed smoothly in one or more directions to overcome stress 
concentration, as a common problem in usual composite materials [1]. Since they include two 
different components, FG materials are able to utilize the desirable properties of each 
constituent and as a result they can be designed for specific functions and applications. The 
static and dynamic behavior of FG beams, plats and shells are studied by many researchers.  
For example, Tadi et al. studied the free vibration of FG nanoshells and the effects of different 
parameters on frequency was shown as well [2]. The bending, buckling and vibration 
behaviors of axially FG nanobeams were investigated by Li et al and the critical buckling 
force and natural frequency were shown size dependent [3]. Ebrahimi et al. examined the 
wave propagation of FG nanoplate under nonlinear thermal loading and the influence of 
different parameters such as gradient index, temperature distribution and length scale 
parameter on the wave dispersion was presented [4]. The buckling of cylindrical and conical 
panels and shells of laminated composite, FGM and carbon nanotube reinforced functionally 
graded cases were examined by Civalek and the effects of material and geometrical 
parameters on buckling response were shown [5]. Akgšz et al. studied the longitudinal free 
vibration of axially FG microbars for different boundary conditions and the effect of material 
and geometrical parameters on natural frequency was shown [6]. 
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Vol.9, Issue 2 (Special Issue: Composite Structures) (2017) 88-102 
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In recent years, the increasing growth of nanotechnology leads to inspiring innovations in 
electrical, magnetic, and optical devices at the nanoscale and nanotubes are surely the most 
exciting nanostructure playing an important role in nanotechnology today [7]. The research on 
nanotubes has illustrated their prominent mechanical and electronic properties which are 
expected to result in revolutionary new devices. The more accurate realization of nanotubes 
behavior, however has so far been limited because of their dimensions, which are often equal 
or smaller than the characteristics length scales [8]. Modified continuum theories, which are 
developed as analytical methods producing more accurate results as such being comparable to 
those of atomistic models, are utilized in many studies. For example, Mehralian et al. studied 
the buckling of FG piezoelectric nanoshell under pressure based on the new modified couple 
stress theory and the critical buckling pressure was shown significantly size dependent by 
increase in thickness and decrease in length [9]. Size-dependent first order shear deformable 
shell model on the basis of modified strain gradient theory was utilized by Gholami et al. to 
study the axial buckling of functionally graded cylindrical shell [10]. The effect of material 
property gradient index was illustrated significant on the buckling load. Mehralian et al. 
studied the free vibration of FG truncated conical shell in thermal environment based on the 
modified couple stress theory and natural frequency was shown significantly size dependent 
particularly by decreasing apex angle and increasing gradient index [11]. The size dependent 
buckling behavior of silicon carbide nanotubes were investigated by Mercan et al. on the basis 
of EringenÕs nonlocal elasticity and surface elasticity and the influence of geometrical 
parameters on critical buckling load was indicated [12]. Akgšz et al. studied the buckling of 
single walled carbon nanotubes using modified couple stress theory and strain gradient theory 
[13]. 
Nonlocal strain gradient theory, as higher order continuum theory, which is able to predict the 
stiffens-hardening effects besides stiffness-softening ones, is introduced by Lim et al. [14]. In 
this theory, the stress field accounts nonlocal stress field besides strain gradients stress filed 
and two material length scale parameters beside two Lame constants are introduced [14]. 
There are many studies in which the static and dynamic behaviors of nanobeams and 
nanoplates are investigated based on this theory. For example, Ebrahimi et al. examined the 
buckling of curved FG nanobeam based on the nonlocal strain gradient theory for simply 
supported and clamped boundary conditions and the effect of different parameters such as 
length scale parameters, power law exponent and boundary conditions were indicated [15]. 
The wave propagation in a viscoelastic SWCNT are studied based on the nonlocal strain 
gradient theory using Timoshenko beam model by Tang et al. and the effects of tube size on 
the wave dispersion was shown [16]. 
Motivated by the mentioned discussion, this paper examines the vibration of FG nanotube 
based on the nonlocal strain gradient theory using the first order shear deformation shell 
model. The governing equations and boundary conditions are derived using HamiltonÕs 
principle. The free vibration of simply supported cylindrical shell, as a case study, is 
investigated. The effects of different parameters such as material length scale parameters, 
thickness ratio and length ratio are illustrated on the frequency. 

2. Theoretical development 

Consider a FG nanotube modeled as cylindrical shell in Fig. 1, in which geometrical 
parameters of length, L, radius, R and thickness h are also indicated. FGM is usually made by 
the combination of two components (e.g. ceramics and metal) and the material properties of 
FG cylindrical shell varies continuously and consistently from the material properties of 
ceramics on the inner surface of the cylindrical shell to the properties of the metal on the outer 
surface as a function of constituentÕs volume fraction.  Variation in volume fraction of metal 
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and ceramic according to power law distribution along cylindrical shell thickness is expressed 
in the following equations: 
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" #= $ %
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(1) 

1c mV V= !  
 
In the above equation, !  stands for power index which varies in the 0 !" " #  interval, and as 
illustrated by Fig. 1,$öz  stands for the arbitrary surface distance from the inner ones of the 
cylindrical shell. Therefore, the material properties of this cylindrical shell are expressed as: 
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where Ec , " c and #c are obtained in ö 0z = , and Em , " m and #m are obtained in öz h= , which 
respectively represent YoungÕs modulus, density and PoissonÕs ratio of ceramics and metal.  
As displayed by Fig. 1, the displacement field of cylindrical shell based on first order shear 
deformation theory along the three directions of x, !  and z is expressed as: 
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In the above equation, u(x,!,t ), v(x,!,t )  and w(x,!,t )  are considered as neutral axis 
displacement, and ( ), ,x x t! "  and ( ), ,x t!" !  as rotation of a transverse normal about the 
circumferential and axial directions. Besides, the position of the neutral axis is expressed as 
follows [2]: 
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To extract the governing equations of FG nanotubes, HamiltonÕs principle is utilized as 
below:   
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where $T represents kinetic energy variation, $Us  stands for  strain energy variation, and $We  
is variation in the work of external loads acting on the cylindrical shell, which is neglected in 
this study .  
The kinetic energy is obtained from time derivation on the displacement variables, as follows: 
 

 
Fig. 1. Coordinate system and geometry of the FG nanotube. 
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and the variation of kinetic energy is obtained as: 
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Based on the nonlocal strain gradient theory proposed by Lim et al. the strain energy is given 
by [9]: 
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which, "ij , #ij  are the components of strain and stress tensor respectively and Cijkl  represents 
the elasticity tensor for cylindrical shell. Also, the non-zero components of strain field are 
obtained by substituting Eq. (3) into (9) and using the assumption( )1 1z R+ ! . 
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Given the assumption of plane stress in the shear deformation shell theory, the stress tensor 
can be defined as: 
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In Eq. (12), elastic constants are defined as: 
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In the above equation, ( )öE z  and ( )öz!  respectively represent YoungÕs modulus and 

PoissonÕs ratio for FG cylindrical shell. Also, by substituting Eqs. (11) and (12) into Eq. (8), 
the variation of strain energy is obtained: 
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According to nonlocal strain gradient theory, its constitutive equation is as follows: 
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2 21 ij i ijkl kl jkl klt C C!µ " "# $% &' ( = ' (  
(16) 

 
In the above equation, µ is equal to square of nonlocal scale parameter (e0a). Furthermore, $ is 
equal to square of material length scale parameter (l).  
Consequently, by substituting Eqs. (7,14) into Eq. (5) and calculating multiple integral by 
parts, the governing equations of FG nanotube are extracted as: 
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The boundary conditions are given in Appendix A. 
In order to solve the governing equations, the following approximate solutions, satisfied 
differential equations and boundary conditions, are utilized: 
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where m, n stand for axial and circumferential wave numbers. 
Therefore, by substituting Eq. (22) into the equations of motion, the equations are written in 
the matrix form as follows: 
 

[ ]{ } [ ]{ } 0k d M d+ =  (23) 

 
where 
 

{ } { }0
i td d e!=  (24) 

 
Now, by substituting Eq. (24) into (23), we have  
 

[ ] [ ]( ){ }2
0 0k M d!" =  (25) 

 
where! stands for natural frequency,{ } { }0

T

mn mn mn xmn mnd U V W !" "= is displacement 

amplitude vector. To obtain the non-trivial solution to Eq. (25), one must consider the 
determinant of coefficients equivalent to zero from which the shell frequency equation is 
derived and solved.  

3. Results 

For the sake of predicting the vibration behavior of nanotubes more accurately using nonlocal 
strain gradient theory, since the efficiency of the nonlocal strain gradient shell model is 
strongly dependent on the recognition of the proper values of small length scale parameters, µ 
= (e0a)2 and $ = l2 are also calibrated using MD results of a (5,5) armchair CNT, due to 
lacking of the values of small length scale parameters of FG nanotubes. Also the values of µ 
and $ are considered to be (3.3)2 to (3.5)2 nm2 and (0.1)2 to (0.4)2 nm2, respectively, for 
different length ratios. The following material parameters are considered for FG nanotube 
[17]: 
 

Table 1. Material properties of FG cylindrical shell. 
 E (GPa) % & (kg/m3) 

Aluminum 70 0.3 2702 
Ceramics 427 0.17 3100 

  
In the following, the vibration response of nanotubes under different material and geometrical 
parameters is indicated to illustrate the applications of nonlocal strain gradient theory.  
In order to show the influences of small length scale parameters on frequency of nanotubes, 
Figs. 2 and 3 are presented. It is seen that increasing nonlocal parameter (µ) at a certain scale 
factor (%) decreases frequency which reveals the softening effect of nonlocal parameter (see 
Fig. 2); while, increasing scale factor in the case of certain nonlocal parameter increases 
frequency and it means that the effective stiffness of nanotube becomes larger with increasing 
scale factor (see Fig. 3). These phenomena illustrate that by using nonlocal strain gradient 
theory, the nanotube exerts the softening and stiffening behavior by increasing the nonlocal 
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parameter and scale factor, respectively. Besides, due to the higher elastic modulus of 
ceramics compared to aluminum, with the increase in the gradient index in the shell, where ! 
= 0 is for the aluminum shell and ! = & for the ceramic shell, the frequency increases as well. 

 
Fig. 2. Effect of nonlocal parameter on frequency for different power law index. 

 

 
Fig. 3. Effect of scale factor on frequency for different power law index. 

 
Fig. 4 is indicated the influences of thickness ratio on frequency of nanotubes. Regarding Fig. 
4, it is witnessed that the increase in thickness ratio contributes to the higher frequency for 
various values of power law index because of ascending the stiffness of nanotube; besides, the 
more increase in the frequency is occurred when the power law index goes up. Also, it is 
found that the higher frequency takes place at high power law index and thickness ratio. This 
is regarded as evidence that the power law index makes nanotube stiffer.  
In order to see the effects of thickness ratio more clearly, Figs. 5 and 6 illustrate the effects of 
thickness ratio on frequency of nanotubes, particularly on different scale factors and nonlocal 
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parameters. It is shown that, the high frequency appears at high scale factor and low nonlocal 
parameter. It is clear that the trends of the frequency variation versus thickness ratio for 
various scale factors and nonlocal parameters are similar to Fig. 4 and similar conclusion can 
be drawn. It should be noted that, the influence of the transverse shear deformation is 
significant when thick and short nanotubes are investigated and since the first order shear 
deformation theory is used in this study, there is no limitation on choosing the values of 
thickness parameter.  

 

 
Fig. 4. Effect of thickness ratio on the frequency for different power law index (µ = (3.3e-9)2, % = 

(0.4e-9)2). 
 

 
Fig. 5. Effect of thickness ratio on the frequency for different scale factors (! = 2, µ = (3.3e-9)2). 
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Fig. 6. Effect of thickness ratio on the frequency for different nonlocal parameters (!  = 2, $ = 

(0.4e-9)2). 
 
Variation of frequency versus length ratio for different power law index is illustrated in Fig. 
7. As is evident from Fig. 7, the frequency is shown to be decreasing with increasing length 
ratio and this effect is more significant by increasing power law index which depicting stiffer 
nanotubes. In other words, the effects of length ratio on the frequency with greater power law 
index are relatively more than those of ones with small power law index.  
In order to have a deeper insight into the influence of length ratio, Figs. 8 and 9 are also 
illustrated for various scale factors and nonlocal parameters. According to these figures, the 
decreasing procedure of frequency with respect to the increase in length ratio for various scale 
factors and nonlocal parameters is the same as Fig. 7. Moreover, from these figures it can be 
seen that the influence of scale factor and nonlocal parameter is more evident when length 
ratio is small. Also, according to Figs. 8 and 9, at high length ratio the results of the present 
model approach to those of classical ones which shows the capability of classical model to 
predict the vibration response of large-scale structures.  
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Fig. 7. Effect of length ratio on frequency for different power law index (µ = (3.3e-9)2, % = (0.4e-9)2). 

 

 
Fig. 8. Effect of length ratio on frequency for different scale factors (!  = 2, µ = (3.3e-9)2). 
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Fig. 9. Effect of length ratio on frequency for different nonlocal parameters (!  = 2, % = (0.4e-9)2). 

 

 

4. Conclusion 

In this study, the free vibration of FG nanotube is studied based on the nonlocal strain 
gradient theory and first order shear deformable theory. The material properties are 
considered to be variable through thickness direction according to power law distribution. The 
governing equations and boundary conditions are derived based on the HamiltonÕs principle 
and the free vibration of simply supported FG nanotube is studied as well. The effects of 
various parameters such as material length scale parameters, thickness, length and power law 
index are investigated on the frequency. It was revealed that increase in power law index 
intensifies the influence of nonlocal parameter and scale factors on the FG nanotube 
frequency. Moreover, the higher frequency appears at higher thickness ratios and lower length 
ratios. Furthermore, the effects of length ratio and thickness ratio are relatively intense for 
greater scale factors and lower nonlocal parameters. 
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Due to the stress distribution along thickness of the shell, stress resultants are introduced as 
follows: 
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Abstract  

In this study, the static behavior of nanobeams subjected to end concentrated loads is theoretically investigated in the 
Laplace domain. A closed form of solution for the title problem is presented using Euler-Bernoulli beam theory.  
Nonlocal elasticity theory proposed by Eringen is used to represent small scale effect. A system of differential 
equations containing a small scale parameter is derived for nanobeams. Laplace transformation is applied to this system 
of differential equations containing a small scale parameter. The exact static response of the nanobeam with end 
concentrated loads is obtained by applying inverse Laplace transform. The calculate results are plotted in a series of 
figures for various combinations of concentrated loads. 

Keywords: Nonlocal elasticity theory, nanobeam, Laplace transform, static response. 

1. Introduction 

   Single walled carbon nanotubes (nanobeams) are non-classical nanomaterials of current interest in 
several applicative sectors, such as electronics, medicine and engineering. They have superior 
mechanical and electrical properties and their potential applications in optics, electronics and other 
fields of nanotechnology. Classical continuum theory is size-free theory and this theory lacks the 
accountability of the size effects arising from the small-size.  There have been different non classical 
continuum theories used to overcome small size effects. Integral type, differential equation type or 
gradient nonlocal elasticity type models abandon the classical elasticity assumption of local model, 
and stated that stress depends not only on the strain at that point.  

Eringen [1] proposed the new higher order continuum theory known as “nonlocal elasticity theory” 
in 1970s. In this theory small size effect can be considered in the constitutive equations simply as a 
material scale parameter. Nonlocal elasticity theory based nano sized structures are new materials 
(nanomaterials) which are designed to achieve a higher performance in physical and mechanical 
properties.  The nonlocal continuum theory has been widely applied to many mechanical problems of 
a wide range of interest, including the  bending, buckling, and vibration of beam-like structures [2-4] 
and plate-like structures [5-7]  and elements in nano and micro sized structures. Many research 
papers correlated to nonlocal continuum theories have been addressed the small scale effects in 
nanostructures and apply these higher order elasticity theories to determine the mechanical behavior 
of nanostructures, see Refs. [8-25]. 

International Journal of Engineering & Applied Sciences (IJEAS) 
Vol.9, Issue 2 (Special Issue: Composite Structures) (2017) 103-111 
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In this work, a Laplace transformation is introduced for the bending analysis of the cantilever 
nanobeams with end concentrated loads (initial value problems). A systems of differential equations 
is derived with initial and boundary conditions. Laplace transformation is applied to this systems of 
differential equations containing nonlocal elasticity parameter with known initial conditions. The 
closed form of solutions of the nanobeam with end concentrated loads is derived by applying inverse 
Laplace transform. 

2. Formulation of the problem 

The constitutive relation, the equations of equilibrium and geometrical compatibility condition of a 
nanobeam in the two dimensional plane are [26].  

 

 
,

dw
dx

j=  (1) 

 

 ,
d M
dx EI
j -

=  (2) 

 

 1 ,
dM
dx

P Tj= +  (3) 

 

 0,
dT
dz

=  (4) 

where M and T are the bending moment and the shear force, w and j are the lateral displacement and 
the slope of the beam. On the other hand, Eq. (2) takes a different form in nonlocal elasticity [27]. 
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where a is the internal characteristic length, is a constant ( 0 0.39e = , 84 10a -= ´ cm). Using Eq. (2), 
above relation takes the following form 
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then according to nonlocal elasticity theory, the system of differential equations is given by [26]. 
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where EI  is the flexural rigidity of the nanobeam, E  is Young's modulus, I  is the moment of inertia 
of the cross-sectional area A, P1  the axial concentrated force, P2  the lateral concentrated force,  a the 
internal characteristic length and e0 is a constant. The initial conditions can be calculated as follows; 
 

 
 Fig. 1. A cantilever nanobeam with end concentrated forces 

 
 0,(0)w =  (8) 

 
 0,(0)j =  (9) 

 
 2(0) ,M P L= -  (10) 

 
 2.(0)T P=  (11) 

 
The following systems of differential equations can be derived from the Eq. (7): 
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3. Closed form of solutions 

By applying Laplace transform to these equations: 
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then using the initial conditions given in Eqs. (8-11), following equations are derived in Laplace 
domain: 
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Inverse Laplace transforms of above equations give the closed form of solutions: 
 

 [ ]

1 12
2 2 12 2

1 12
3

1 1 2
1

cosh ( ) sinh
( ) ( )( )

,=
o

o o

P x P x
LP P EI P e a

EI P e a EI P e aL x
w x

P
P

P
P

� � � �
� � � �- +
� � � �- + - +- � � � �- +  (24) 

                        
[ ]

1
1 2

11
2 2 2

1 1

1

sinh
( )

( 1 cosh )
( ) ( )

=

o

o o

P x
L P

EI P e aP x
P

EI P e a EI P e a
x

P
j

� �
� �

� � � �- +� �� �- + -
� �- + - +� �

,
 (25) 

 [ ]

12
2 1 2

11
2 2

11

( ) sinh
( )

cosh ,
( )

=
o

o

o

P x
P EI P e a

EI P e aP x
M x LP

PEI P e a

� �
� �- +

� � � �- +� �� � +
� �- +� �

 (26) 
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4. Numerical results 
 

 To evaluate the significance of end loads on the static analysis of nonlocal beams, this section 
considers a nano-sized beam with the end concentrated forces. Here we assume E*I = 1 nN.m2, e0a=1 
nm.  In order to investigate the significances of end axial concentrated forces on the mechanical 
behaviors of the nanobeam, its bending behaviors are compared. The significances of the end axial 
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and lateral forces on the linear bending deflection of the cantilever nanobeam are investigated by 
using the nonlocal elastic Euler-Bernoulli beam model.  Figs. 2 and 3 reveal the effect of the end 
concentrated forces on the deflection with end lateral force and the deflection with end axial force of 
a cantilever nanobeam, respectively. 
 

                          
                       Fig. 2. Static deflection for different concentrated forces (P1 =1.2 nN). 

                             
                            Fig. 3. Static deflection for different axial forces (P2 =1.0 nN). 

 

The effects of end forces on the slope of cantilever nanobeams are presented in Figs. 4 and 5. The 
figures show increase and decrease in the slope with increase in distance from fixed end which 
highlights the significance of end concentrated forces. So, it can be concluded that the lateral 
deflection is highly increased with higher values of the end lateral concentrated forces. 
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Fig. 4. Slope for different concentrated forces ( P1 =1.2 nN). 

 

                               
Fig. 5. Slope for different axial forces (P2 =1.0 nN). 

 
The effects of end forces on the bending of cantilever nanobeams are presented in Figs. 6 and 
7.  Again the influences of the axial force and the lateral force on the bending moment are 
quite obvious. 

                                
Fig. 6. Moment diagram for zero axial force (P1 =0.0 nN). 
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Fig. 7. Moment diagram for constant axial force (P1 =5.0 nN). 

  
 

 

5. Conclusions 

In present work, It has been shown that the Laplace transform could be applied to solve nonlocal 
initial value problem that contains homogeneous linear differential equations. The single walled 
carbon nanotube is modeled as beam via Euler-Bernoulli theory. Nonlocal elasticity theory is used 
for small scale effect. One can easily transform the system of differential equations with constant 
coefficients into a system of (algebraic) equations with constant coefficients. Then these systems of 
algebraic equations can be solved and takes the inverse Laplace transform to get closed form 
solutions of the original equations.  
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Abstract 

Thermal analyses of radially functionally graded (FG) thick-walled a spherical vessel and an infinite cylindrical vessel or 
a circular annulus are conducted analytically by the steady-state 1-�'���)�R�X�U�L�H�U���K�H�D�W���F�R�Q�G�X�F�W�L�R�Q���W�K�H�R�U�\���X�Q�G�H�U���'�L�U�L�F�K�O�H�W�¶�V��
boundary conditions. By employing simple-power material grading pattern the differential equations are obtained in the 
form of Euler-Cauchy types. Analytical solution of the differential equations gives the temperature field and the heat flux 
distribution in the radial direction in a closed form. Three different physical metal-ceramic pairs first considered to study 
the effect of the aspect ratio, which is defined as the inner radius to the outer radius of the structure, on the temperature 
and heat flux variation along the radial coordinate. Then a parametric study is performed with hypothetic inhomogeneity 
indexes for varying aspect ratios.                                                                                                                                                                                        

Keywords: Thermal analysis; functionally graded; exact solution; axisymmetric; cylindrical vessel, spherical vessel, 
inhomogeneity index, aspect ratio, thick-walled, circular annulus. 

1. Introduction 

As is well known, a temperature difference results in the heat conduction and the heat transfer in 
structures. Manufacturing processes in factories generally include thermal processes.  So the thermal 
analysis is an important issue in industry related to mechanical, chemical, automotive, petroleum, 
nuclear engineering and living tissues. A thermal analysis is also the back-bone for the thermal-related 
analyses such as thermo-mechanical, thermo-electro-mechanical etc. So an accurate solution to the 
temperature field in the structure is always be very helpful for understanding the real physical thermal 
response of the structure under consideration at both the manufacturing phase and during its life-time. 

To explore the question a number of studies were performed analytically, numerically and 
experimentally up to now. Chang and Tsou [1-2] used the Green's functions for heat conduction in an 
anisotropic medium for both steady state and unsteady state cases. Oato et al. [3] studied axisymmetric, 
transient, thermal stress analysis of a hollow cylinder composed of multilayered composite laminates 
with temperature changes in the radial and axial directions due to axisymmetric heating from the outer 
and/or the inner surfaces. They used Fourier cosine transform and Laplace transform for the 
temperature field and the thermo-elastic potential function and apply Love's displacement function to 
the thermo-elastic field. They then obtained the exact solutions for the temperature and thermal stress 
distributions in a transient state. Obata and Noda [4] studied the steady thermal stresses in a hollow 
cylinder and a hollow sphere made of a functionally gradient material (FGM) and compared their 
results with those of a FGM plate. Zimmerman and Lutz [5] derived an exact solution for the problem 
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of the uniform heating of FG circular cylinder whose modulus of elasticity and thermal expansion 
coefficient vary linearly with radius. Tarn [6] found an exact solution for FG anisotropic cylinders 
subjected to thermal and mechanical loads. Awaji and Sivakumar [7] presented a numerical technique 
for analyzing one dimensional transient temperature distributions in a circular hollow cylinder that was 
composed of functionally graded ceramic�±metal-based materials, with considering the temperature-
dependent material properties. A 1-D steady state mechanical and thermal stress analysis of a thick 
hollow cylinder under axisymmetric and non-axisymmetric loads was studied by Jabbari et al. [8-10]. 
Liew et al. [11] sectioned the FGM cylinder into a number of homogeneous sub-cylinders. 
Displacements and stresses within the homogeneous sub-cylinders are obtained from the homogeneous 
solutions in Reference [11]. Tarn and Wang [12] worked the end effects of heat conduction in circular 
cylinders of functionally graded materials and laminated composites. Ruhi et al. [13] presented a semi 
analytical thermo-elasticity solution for thick-walled finite-length cylinders made of power-graded 
materials. The stress distribution in a power-graded orthotropic cylindrical body was investigated 
�D�Q�D�O�\�W�L�F�D�O�O�\���E�\���2�U�D�O���D�Q�G���$�Q�O�D�ú��[14]. Eslami et al [15] offered a general solution for the one-dimensional 
steady-state thermal and mechanical stresses in a hollow thick sphere made of a simple-power graded 
material. By using the Laplace transformation and a series expansion of Bessel functions, Ootao and 
Tanigawa [16] analyzed one-dimensional transient thermoelastic problem with power-law graded 
material properties. Pelletier and Vel [17], by using an arbitrary variation of orthotropic material 
properties in the radial direction, studied analytically the steady-state response of a functionally graded 
thick cylindrical shell subjected to thermal and mechanical loads and simply supported at the edges by 
the power series method. Birman and Byrad [18] reviewed related studies published in 2000-2007.   

After 2007s, one-dimensional studies are focused especially on the transient thermal analysis, the stress 
and deformation analyses under steady state case etc. Kayhani et al. [19] presented an exact solution 
of conductive heat transfer in a cylindrical composite laminate in the radial and azimuthal directions. 
Kayhani et al. [20] further obtained a general analytical solution for heat conduction in cylindrical 
multilayered composite laminates in the radial and axial directions. Hosseini and Abolbashari [21] 
presented a unified formulation to analyze of temperature field in a thick hollow cylinder made of 
functionally graded materials with various grading patterns. Bayat et al. [22] carried out a thermo-
mechanical analysis of functionally graded hollow sphere subjected to mechanical loads and one-
dimensional steady-state thermal stresses. Lee and Huang [23] developed an analytic solution method, 
without integral transformation, to find the exact solutions for the transient heat conduction in 
functionally graded (FG) circular hollow cylinders with time-dependent boundary conditions. By 
introducing suitable shifting functions, the governing second-order regular singular differential 
equation with variable coefficients and time-dependent boundary conditions is transformed into a 
�G�L�I�I�H�U�H�Q�W�L�D�O���H�T�X�D�W�L�R�Q���Z�L�W�K���K�R�P�R�J�H�Q�R�X�V���E�R�X�Q�G�D�U�\���F�R�Q�G�L�W�L�R�Q�V�����,�Q���/�H�H���D�Q�G���+�X�D�Q�J�¶�V��[23] study, while the 
density has a constant value, the variation of specific heat is considered.  Wang [24] developed an 
effective approach to analyze the transient thermal analysis in a functionally graded hollow cylinder 
based on the laminate approximation theory. The heat conductivity, mass density and specific heat are 
assumed to vary along the radial direction with arbitrary grading pattern as in the study. Wang [24] 
divided the transient solution into two parts. He obtained the quasi-static solution by the state space 
method and the dynamic solution by the initial parameter method in the time domain. By dividing the 
cylinder into some homogeneous sub-cylinders, an arbitrarily-graded circular hollow cylinder is 
studied analytically under arbitrarily non-uniform loads on the inner and outer surfaces by Li and Liu 
[25]. Delouei and Norouzi [26] presented an exact analytical solution for unsteady conductive heat 
transfer in multilayer spherical fiber-reinforced composite laminates for the most generalized linear 
boundary conditions consisting of the conduction, convection, and radiation. Arefi [27] performed a 
nonlinear thermal analysis of a hollow functionally graded cylinder by employing a semi-analytical 
method of successive approximations. A power function distribution is used for the simulation of non-
homogeneity of the material used. A temperature dependence is employed for only the thermal 
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conductivity. Based on the two-points Hermite approximations for integrals, Chen and Jian [28] 
proposed an improved lumped parameter model for the transient thermal analysis of multilayered 
composite pipeline with active heating. Daneshjou et .al. [29] presented a non-Fourier heat conduction 
analysis of infinite 2-D functionally graded (FG) hollow cylinders subjected to a time-dependent heat 
source. In Daneshjou et .al.�¶�V���V�W�X�G�\ [29], a new augmented state space method considering laminate 
approximation theory is introduced. All material properties are assumed to vary continuously within 
the cylinder along the specified directions following an arbitrary law.  

As seen from the literature survey that the thermal-related analyses are of great importance for both 
cylindrical and spherical structures. However, most of those studies focused on the computation of 
thermal stresses in the structure. That is, although they implemented the temperature distribution in 
their analyses, the thermal behavior of such structures were not studied in a detailed manner. In the 
present study, because of these reasons, the thermal analysis of such structures is addressed 
individually for both spherical and cylindrical vessels made of functionally power-law-graded non-
homogeneous materials. It may be noted that the heat conduction equations are identical for both a 
cylindrical structure and a uniform discs or a circular annulus.  

2. Derivation and Solution of Heat Conduction Equations 

The rate of the heat flux in a solid object is directly proportional to the temperature gradient. The 
Fourier law governing the heat transfer by conduction is 

                                                        (1) 

where the temperature gradient is given in cylindrical coordinates, , by 

                                             (2a)   

and in spherical coordinates, , by  

                                      (2b)     

By using the first law of thermodynamics, the heat conduction equation is written as follows  

                                                      (3)                                

This equation takes the following form without heat generation in the structure [30]. 

                                                  (4) 

Where Laplacian of the temperature is derived in cylindrical coordinates as 

                                    (5a)                                                     
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and in spherical coordinates as follows 

          (5b) 

In recent years functionally graded metal-ceramic composites gain considerable attention due to their 
attractive properties such as heat resisting, erosion and corrosion resistant, and fracture toughness. For 

the one-dimensional axisymmetric conditions, 
�!

�!��

L �r�á

�!

�!��

L �r�á

�!

�!�í

L �r��, the non-steady heat 

conduction equation of such materials in which the thermal conductivity, density, and the specific heat  
change along the radial direction becomes (Fig. 1) 

 (sphere)                                      (6a) 

 (cylinder/circular annulus)                           

(6b) 

 

Fig.1. A characteristic section of the structure 

After re-arranging of the equations given above, one may get the followings for the spherical structure 

                              (7a) 

for the cylindrical structure or a disk of uniform thickness or a circular annulus 

                          (7b) 
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By using prime symbol for derivatives with respect to the radial coordinate, for the steady state case (

) one may get the followings.    

 (sphere)                                     (8a) 

 (cylinder/uniform disk)                            (8b) 

In the above equations, the material grading pattern may be chosen arbitrarily. Solution method to be 
adopted strictly depends on the material grading pattern considered. Some limited grading rules such 
as a simple power material grading rule permit to get the differential equation with constant coefficients 
and offer an analytical solution. For arbitrary grading patterns, the differential equations with variable 
coefficients are confronted. Consequently in the thermal analysis with arbitrary material grading 
patterns, it is necessary to use an appropriate numerical technique in the solution process. The material 
gradation may also be done as full-ceramic at the inner surface and full-metal at the outer surface, or 
vise-verse, or metal-ceramic mixtures at both surfaces by considering the real working conditions of 
the structure�����)�L�Q�D�O�O�\�����D�O�O���W�\�S�H�V���R�I���E�R�X�Q�G�D�U�\���F�R�Q�G�L�W�L�R�Q�V���V�X�F�K���D�V���'�L�U�L�F�K�O�H�W�¶�V�����1�H�X�P�D�Q�Q�¶�V�����5�R�E�L�Q�¶�V���D�Q�G��
mixed boundary conditions may be applied to the solution of equations (8). 

To get exact solutions, in the present study, it is assumed that the thermal conductivity is changed 
outwardly between the inner and outer surfaces as follows  

                                                                         (9) 

where the inhomogeneity index of a physical material may be determined by 

                                                                           (10) 

Equation (8) becomes homogeneous Euler-Cauchy type differential equation with constant coefficients 
under assumptions given in Eq. (9). The solution will be in the form of 

                                                                  (11)                                                                                                   

Equation (8) is solved with the first kind boundary conditions (Dirichlet)   

  ;                                                (12) 

The solutions for each homogeneous/inhomogeneous material types are presented in Tables 1 and 2 
for cylindrical and spherical vessels, respectively. 
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3. Examples with Physical Materials 
��

Metal-ceramic pairs considered in the present study and their material properties are presented in Table 
3.  It is assumed that the inner surface is to be full-metal, and the outer surface is to be full-ceramic. 
Between the inner and the outer surfaces the material gradation obeys Eq. (9). The boundary conditions 
are determined as: , and . The geometrical properties of the structures are chosen 
as follows: , . 

 
}{Differential equations and their solutions for cylinders or uniform discs  .Table 1 
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}{ spherical vesselsDifferential equations and their solutions for . 2Table  

 
Sphere Made of a Homogeneous and Isotropic Material 
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Sphere Made of a Power-Law-Graded Isotropic and Non-homogeneous Material 
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Table 3. Metal-ceramic pairs considered in the present study 
 

 
��

Metal/Ceramic pair��
�G���:

�9
�I�-

�; 
��


F�x�ä�t�t�{�t�t FGM-1 
)4N3(Ni/Si��

90.7 Nickel (Ni) 
1.209 )4N3Silicon Nitride (Si 


F�t�ä�y�x�r�y�u FGM-2 
)3O2(Al/Al��

204 Aluminum (Al) 
30.1 )3O2Aluminum Oxide (Al 


F�u�ä�s�s�s�r�s FGM-3 
)2304/ZrO-(SUS��

15.379 SUS-304 (Stainless Steel) 
1.78 )2Zirconium Oxide (ZrO 

��

 

Fig. 2. Temperature variations in physical FGMs with the aspect ratio. 
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Fig. 3. Heat flux variations in physical FGMs with the aspect ratio. 
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Figs. 2 and 3 show the temperature and the heat flux variation in FGM-1, FGM-2 and FGM-3 metal-
ceramic pairs for different aspect ratios. It is seen from Fig. 2 that the temperature change occurs 
somewhat rapid in spheres than cylinders. As the aspect ratio increases, that is when the thickness 
decreases, the temperature distribution differences between a cylinder and a sphere are facing 
disappearance. The temperature varies slowly in FGM-1 than the others. Heat flux in a sphere is higher 
than a cylinder as seen Fig. 3. An increase in the aspect ratio results much heat flux in the structure. 
The maximum heat flux occur at the inner surface of both structural geometries. FGM-2 offers the best 
metal-ceramic pair regarding the heat flux. 
 

 

Fig. 4. Variation of temperature with hypothetic inhomogeneity indexes and aspect ratios for both 
cylinders and spheres (�G�Ô
L �t�r W/mK) 

��

 



�9�����<�Õ�O�G�Õ�U�Õ�P 

122 
 

4. A Parametric Study with Hypothetic Inhomogeneity Indexes 

In this section, a parametric study is carried out to investigate the temperature variation along the radial 
direction with both aspect ratios and hypothetic inhomogeneity indexes which vary from  
towards . Results are given in Table 4 and Figs. 4 and 5. 

 

Fig. 5. Variation of heat flux with hypothetic inhomogeneity indexes and aspect ratios for both 
cylinders and spheres (�G�Ô
L �t�r W/mK) 
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Table 3. Radial variation of temperature and heat flux with hypothetic inhomogeneity indexes for 
both cylinders and spheres having  ��

�=

�>

L �r�ä�w and �G�Ô
L �t�r W/mK. 

         
�6�æ�ã�Û�Ø�å�Ø�:�N�; 

0.5 373. 373. 373. 373. 373. 373. 373. 373. 
0.55 372.787 372.02 369.217 365. 350.263 341.695 330.153 321.014 
0.6 372.349 370.478 364.68 357. 334.481 323.607 311.365 303.733 

0.65 371.496 368.141 359.32 349. 323.187 312.661 302.532 297.427 
0.7 369.922 364.709 353.069 341. 314.891 305.774 298.128 294.937 

0.75 367.138 359.806 345.857 333. 308.661 301.294 295.82 293.886 
0.8 362.398 352.965 337.617 325. 303.893 298.295 294.556 293.416 

0.85 354.591 343.619 328.28 317. 300.181 296.235 293.838 293.194 
0.9 342.102 331.08 317.777 309. 297.248 294.79 293.415 293.085 

0.95 322.638 314.529 306.04 301. 294.901 293.754 293.159 293.03 
1. 293. 293. 293. 293. 293. 293. 293. 293. 

�6�Ö�ì�ß�Ü�á�×�Ø�å�:�N�; 
0.55 372.875 372.402 370.525 367.4 354.488 345.95 333.746 323.795 
0.6 372.594 371.373 367.274 361.267 340.407 328.819 314.872 305.855 

0.65 372. 369.677 363.101 354.6 329.45 317.544 305.22 298.731 
0.7 370.816 366.99 357.845 347.4 320.755 309.88 300.019 295.69 

0.75 368.569 362.867 351.333 339.667 313.741 304.523 297.089 294.31 
0.8 364.48 356.721 343.381 331.4 308. 300.688 295.374 293.65 

0.85 357.313 347.782 333.789 322.6 303.242 297.884 294.335 293.319 
0.9 345.157 335.065 322.346 313.267 299.255 295.796 293.687 293.146 

0.95 325.132 317.323 308.829 303.4 295.881 294.215 293.272 293.052 
�M�å�?�æ�ã�Û�Ø�å�Ø�:�N�; 

0.5 56.3601 304.762 1371.43 3200. 10971.4 16516.1 25700.4 35217.2 
0.55 46.5786 251.869 1133.41 2644.63 9067.3 13649.7 21240. 29105.1 
0.6 39.1389 211.64 952.381 2222.22 7619.05 11469.5 17847.5 24456.4 

0.65 33.3492 180.332 811.496 1893.49 6491.97 9772.86 15207.3 20838.6 
0.7 28.7551 155.491 699.708 1632.65 5597.67 8426.6 13112.4 17968. 

0.75 25.0489 135.45 609.524 1422.22 4876.19 7340.5 11422.4 15652.1 
0.8 22.0157 119.048 535.714 1250. 4285.71 6451.61 10039.2 13756.7 

0.85 19.5018 105.454 474.543 1107.27 3796.34 5714.92 8892.87 12185.9 
0.9 17.3951 94.0623 423.28 987.654 3386.24 5097.57 7932.22 10869.5 

0.95 15.6122 84.4216 379.897 886.427 3039.18 4575.1 7119.22 9755.46 
1. 14.09 76.1905 342.857 800. 2742.86 4129.03 6425.1 8804.3 

�M�å�?�Ö�ì�ß�Ü�á�×�Ø�å�:�N�; 
0.5 31.2805 176.378 853.333 2133.33 8533.33 13653.3 22576.4 32031.3 

0.55 28.4369 160.344 775.758 1939.39 7757.58 12412.1 20524. 29119.3 
0.6 26.0671 146.982 711.111 1777.78 7111.11 11377.8 18813.6 26692.7 

0.65 24.062 135.675 656.41 1641.03 6564.1 10502.6 17366.4 24639.4 
0.7 22.3432 125.984 609.524 1523.81 6095.24 9752.38 16126. 22879.5 

0.75 20.8537 117.585 568.889 1422.22 5688.89 9102.22 15050.9 21354.2 
0.8 19.5503 110.236 533.333 1333.33 5333.33 8533.33 14110.2 20019.6 

0.85 18.4003 103.752 501.961 1254.9 5019.61 8031.37 13280.2 18841.9 
0.9 17.3781 97.9878 474.074 1185.19 4740.74 7585.19 12542.4 17795.2 

0.95 16.4634 92.8305 449.123 1122.81 4491.23 7185.96 11882.3 16858.6 
1. 15.6403 88.189 426.667 1066.67 4266.67 6826.67 11288.2 16015.6 
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As seen from Table 3, metals have much greater thermal conductivities than ceramics. If Eq. (10) is 
considered, that is if a metal is placed on the inner surface, this produces negative inhomogeneity 
indexes. The converse is true if a ceramic is on the inner surface. When the inhomogeneity index is 
changed from  to , the temperature declines faster at the vicinity of the inner surface 
(Fig. 4). Maximum heat flux is at the inner surface for all conditions since the inner surface has greater 
temperature than the outer. Heat flux decreases with negative inhomogeneity indexes (Fig. 5).  

5. Conclusions 

This study offers compact expressions in closed forms for the temperature and the heat-flux 
distributions in radial direction for hollow cylindrical and spherical structures made of radially 
functionally graded materials. A simple power material grading rule is used to get a differential 
equation with constant coefficients.  

The derived formula for the temperature distribution becomes indefinite at  in spheres and  
in cylinders. This disadvantage may be overcome numerically by using real numbers instead integers 
for those inhomogeneity indexes as seen in Fig. 2.  

The formulas in Tables 1 and 2 may be used directly in some thermal and optimization problems. They 
may also be served as sound benchmark results for advanced studies.  

 

Notations 
 

a radius at the inner surface 
b radius at the outer surface 

 specific heat capacity  

 integration constants 

 unit vectors in cylindrical coordinates 

 unit vectors in spherical coordinates 

 thermal conductivity   

 Heat flux component in radial direction 
  the rate of heat flux vector  

 heat generation per unit volume  

r radial coordinate 
t time 
T temperature 

 inhomogeneity constant for simple-power grading rule 

 thermal diffusion coefficient  

 characteristic roots of the differential equation 
 density  

 Azimuthal angle 
 Zenith angle 
 gradient operator 
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 Laplacian operator  

 
derivative with respect to the radial coordinate 

subscripts  
a value at the inner surface 
b value at the outer surface 
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Abstract  

In the present study, free vibration of Rayleigh beam composed of functionally graded materials (FGMs) is investigated. For 
this purpose, the equation of the motion of functionally graded (FG) beam derived according to Rayleigh beam theory. The 
material properties are assumed to vary continuously through the thickness of the beam according to the power-law form. 
Resulting equations are solved for simply supported boundary conditions. In order to validate the results, a comparison is 
carried out with available results for homogeneous beam. The effects of varying material properties on the dimensionless free 
vibration frequency parameters are examined. It is seen that varying material properties have significant effects on 
dimensionless free vibration frequency parameters of FG Rayleigh beam 

Keywords: Beam, Free Vibration, Rayleigh beam theory, Functionally Graded Materials (FGMs). 

1. Introduction 

FGMs are extensively used in machinery, space, nuclear and civil engineering; high temperature exposed 
building components, space vehicles, microelectronics, and industrial applications. These types of 
materials were first introduced by Japanese scientists in 1984 as thermal barrier materials. FGM is 
typically a mixture of a ceramic and a metal so that the metal can withstand high temperatures in the 
thermal environment as well as reduce the tensile stresses that would otherwise occur on the ceramic 
surface during the first stages of cooling [1-4]. 

Beam structures have large applications in engineering field and studying the vibration behavior of this 
kind of structural components are important for understanding the behavior of more complex and real 
structures subjected similar conditions. Therefore, researchers have been focused on the vibration analysis 
of beam structures using different theories and several solution methods [5-13].  

Due to the advantages and increasing use of FGMs and importance of the beam structures in the 
engineering field, many studies have been performed on the vibration problems of FG beams [14-22].  
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From the search of open literature, it is seen although there are numerous studies on the vibration analysis 
of FG beams using different beam theories, the number of works depending on Rayleigh beam theory is 
still limited. An attempt is made to address this problem. For this purpose, the equation of the motion of 
FG beam derived using Rayleigh beam theory. The functionally graded material properties are assumed 
to vary continuously through the thickness direction of the beam according to power law form. Resulting 
equations are solved for simply supported boundary conditions. In order to validate the results, a 
comparison is carried out with available results for homogeneous beam. The effects of varying material 
properties on the dimensionless free vibration frequency parameters are examined.  

2. Effective material properties of FGMs 

Consider a FGM beam consist of ceramic�±metal, which has length, L, width b, and thickness, h, as shown 
in Fig. 1.  

 

 

Fig. 1. Geometry of a functionally graded beam  
 

T�K�H���H�I�I�H�F�W�L�Y�H���P�D�W�H�U�L�D�O���S�U�R�S�H�U�W�L�H�V���R�I���W�K�H���)�*���E�H�D�P���� �L���H������ �<�R�X�Q�J�¶�V���P�R�G�X�O�X�V�� and mass density , vary 
continuously through the thickness direction according to a function of the volume fractions of the 
constituents while �3�R�L�V�V�R�Q�¶�V���U�D�W�L�R�� is taken to be constant.   

According to the rule of mixture, the effective material properties, , can be expressed as 
 

   (1) 
 

where , ,  and  are the material properties and the volume fractions of the metal and the 
ceramic constituents respectively. 

The total volume fraction of the metal and ceramic as follows  
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   (2) 
 

The power law of volume fraction of the ceramic constituent of the beam as follows 

 

   (3) 

 

where d is a non-negative number ( ) called power law or volume fraction index, and z is the 
distance from the mid-plane of the beam. Note that, FG beam becomes a fully ceramic one as while 
it becomes a fully metallic one as .  

The variation of the volume fraction of the ceramic constituent, , through the thickness direction of the 

FG beam versus various values of power law index, d, is illustrated in Fig. 2. It is clear that the  changes 
rapidly near the bottom surface for  while it changes rapidly near the top surface for . 

 

 

Fig. 2. Variation of volume fraction of the ceramic constituent along thickness of FG beam versus 
various values of power law index 
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3. Governing Equation 
 

Using Kirchoff-Love hypothesis, displacements at any point of a FG beam can be expressed as  
 

   (4) 

 

where  and  are the displacements at mid-surface in the x, and z directions, respectively, 
and  is the rotation of the cross section at the mid-plane.  

 

The normal strain and shear strain are 
 

   (5) 

 

   (6) 

 

Rayleigh beam theory neglects the shear strain, , hence we have 
 

     (7) 

 

�$�F�F�R�U�G�L�Q�J���W�R���W�K�H���+�R�R�N�H�¶�V���O�D�Z�����W�K�H���Q�R�U�P�D�O stress is defined as 
 

   (8) 

 

The stress resultants in terms of axial force, Nx, bending moment, Mx, and transverse shear force Qx, can 
be written as 
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   (9) 
 

   (10) 

 

   (11) 

 

where  and  are the material stiffness components of FG beam and defined as follow 
 

   (12) 

 

�7�D�N�L�Q�J���L�Q�W�R���D�F�F�R�X�Q�W���W�K�H���D�[�L�D�O���D�Q�G���U�R�W�D�U�\���L�Q�H�U�W�L�D�V�����X�V�L�Q�J���+�D�P�L�O�W�R�Q�¶�V���3�U�L�Q�F�L�S�O�H��and after some mathematical 
operations, the governing equation of FG Rayleigh beam is derived as follows 

 

   (13) 

 

where the following definitions apply 
 

   (14) 

 

here  and  are the moment of inertia components of FG beam and defined as follow 
 

   (16) 
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4. Solution of Governing Equation 

FG Rayleigh beam is assumed to have simply supported boundary conditions in both ends. Hence, the 
following boundary conditions are satisfied:  

 

   (17) 

 

Governing Eq.(13) can be rearranged as follows:  
 

   (18) 

 

where the following parameters applied  
 

   (19) 

 

The solution of Eq. (18) satisfying the boundary conditions (17) is assumed as [23]: 
 

   (20) 

 

Substituting the Eq.(20) into Eq. (18) yields  
 

   (21) 

 

Finally, the formula for free vibration frequency of FG Rayleigh beam is obtained as follows 
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   (22) 

 

5. Numerical Results 

In this section examples are given to examine the present problem. At first, a comparison has been 
performed to show the accuracy of the present formulation. Then, an example is exhibited to show the 
effect of power law index on the dimensionless free vibration frequency parameters of FG Rayleigh beam.  

 

5.1. Comparison Study  

To confirm the formulation given in Eq. (22), the values of natural frequencies of homogeneous beam, 
, are compared with results of Rao [23] in Table 1. Here the following beam characteristics 

and material properties are taken into account:  
 

   (23) 
 

 
Table 1. Comparison of the values of natural frequencies of homogeneous beam with results of Rao [23] 

 

Source 
 

n=1 n=2 n=3 

Present Study 696.5834 2713.3651 5857.9512 

Rao [23] 696.5987 2713.4221 5858.0654 

 

As it is seen in Table 1, the results are in good agreement and so the accuracy of the formulation 
is validated.  
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5.2. Illustrative example  
 

Fig. 3 shows the variation of dimensionless free vibration frequency parameters of FG Rayleigh beam, 
, for the first three modes versus power law index, d. Here, FG Rayleigh beam is assumed to be 

composed of Alumina (Al 2O3), and Aluminum (Al). Hence, the following beam characteristics and 
material properties are considered:  

 

    (24) 
 

The dimensionless free vibration frequency parameter of Rayleigh beam is defined as follow: 
 

   (25) 
 

It is obvious from Fig. 3 that, the highest dimensionless free vibration frequency parameters are found for 
Al 2O3 while the lowest ones are found for Al. Furthermore, dimensionless free vibration frequency 
parameters decrease with increasing power law index, d. As a result, it is concluded that the dimensionless 
free vibration frequency parameters decrease as the material property of FG Rayleigh beam varies from 
ceramic to metal component.  
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Fig. 3. Variation of dimensionless frequency parameters of FG Rayleigh beam versus power law 
index, d. 

 

6. Conclusions 

In the present study the free vibration of the beam composed of FGMs is investigated using Rayleigh 
beam theory. The material properties are assumed to vary continuously through the thickness direction of 
the beam according to the power-law form. Resulting equations are solved considering simply supported 
boundary conditions. In order to validate the results, a comparison is carried out with available results for 
homogeneous beam. It is seen that varying material properties have significant effects on dimensionless 
free vibration frequency parameters of FG Rayleigh beam. Present analysis can be served as a comparative 
study or data for the different solution methods of future works.  
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Abstract:  

Aorta artery is the most vital artery in humans and almost all animals. Aorta artery is also the largest artery in human 
body. This artery is the first artery coming out from the left ventricle of the heart and extending down to the abdomen, 
where it splits into two smaller iliac arteries. Aorta artery conveys oxygenated blood to all parts of the body so that this 
artery is the one, which is under the influence of the highest blood pressure. It is well known that aorta artery consists of 
three main layers, which cover five sub-layers. In this paper, we aimed to show the difference between functionally graded 
material (FGM) and laminated composite material and to show which model fits to the structure of aorta artery. 

Keywords: Aorta artery, composite materials, functionally graded materials, laminated composite materials. 
 

 

1. Introduction  

The mechanic model of aorta artery has a long history and variety in literature. For example, a 
fundamental paper about mechanic model of aorta artery presented by Gozna et al. in 1974 with the 
effect of age in man [1]. Gozna et al. have found regression equations between aging and aorta artery 
mechanic behavior. These equations have showed that there is a linear relation between aging and 
aorta artery mechanic behavior. More recently, the stability of aorta artery has been investigated in 
case of buckling under blood pressure by Han in 2007 [2]. Further researches of Han et al. proved 
that arteries may buckle and become turtous due to reduced axial strain, hypertensive pressure, and 
weakened artery wall [3-9]. In 2013, Han et al. has introduced new phenotypes, models, and 
applications of aorta artery [10]. In the review, Han et al. summarized the common forms of buckling 
that occurs in blood vessels including cross-sectional collapse, longitudinal twist buckling, and bent 
buckling. Also the phenomena, model analyses, experimental measurements, effect on blood flow, 
and clinical relevance have been discussed. From this and further works Han et al. clearly showed 
that mechanical buckling of aorta artery is an important issue for vasculature, in addition to wall 
stiffness and strength, and requires further studies [11-20]. 
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2. Anatomy of Aorta Artery  

It is well known that aorta artery is composed of three main layers like most of other arteries [21]. 
�7�K�H�V�H���O�D�\�H�U�V���D�U�H���³�L�Q�W�L�P�D�´�����³�P�H�G�L�D�´�����D�Q�G���³�D�G�Y�H�Q�W�L�W�L�D�´���U�H�V�S�H�F�W�L�Y�H�O�\��from inner layer to outermost layer. 
Intima is the innermost layer of the artery which is covering the lumen side of vessels and it is 
composed of endothelial cells and lines the entire circulatory system, from the heart and the large 
arteries all the way down to the very tiny capillary beds. The intima layer also contains extracellular 
matrix and a supporting layer of collagenous tissue. Endothelial cells sorted in a single layer along 
the lumen side. Media is the muscular middle layer of the arteries and veins. It is composed of smooth 
muscle layers. Adventitia is outermost layer of vessels surrounding the media layer. It is mainly 
composed of collagen and, in arteries, is supported by external elastic lamina . The demonstration of 
these three main layers have been shown in Fig. 1. 

 

 

Fig. 1. Main layers of aorta artery 

 

�0�R�U�H���V�S�H�F�L�I�L�F�D�O�O�\���� �W�K�H�V�H���W�K�U�H�H���P�D�L�Q���O�D�\�H�U�V���³�L�Q�W�L�P�D�´���� �³�P�H�G�L�D�´���� �D�Q�G���³�D�G�Y�H�Q�W�L�W�L�D�´���F�R�Q�V�L�V�W���R�I���I�L�Y�H���V�X�E-
layers. These sub-layers are Endotel, internal elastic layer, smooth muscle, external elastic layer, 
collagens and elastic tendons from inside to outside of aorta artery respectively as it is shown in Fig. 
2. 
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Fig. 2. Sub-layers of aorta artery 

 

In 2005, Holzapfel et al. have made an experimental research to determine the material properties of 
the layers of aorta artery separately [22]. Within these experiments, 13 nonstenotic human aorta artery 
�K�D�Y�H�� �E�H�H�Q�� �K�D�U�Y�H�V�W�H�G�� �D�W�� �D�X�W�R�S�V�L�H�V���� �7�K�H�� �D�J�H�� �R�I�� �K�X�P�D�Q�� �Z�H�U�H�� �P�H�D�Q�� ���������“�������� �\�H�D�U�V�� �R�O�G���� �7�K�H�� �D�U�W�H�U�\��
samples have been subjected to cyclic quasi-static uniaxial tension tests from the individual layers in 
�D�[�L�D�O���D�Q�G���F�L�U�F�X�P�I�H�U�H�Q�W�L�D�O���G�L�U�H�F�W�L�R�Q�V�����7�K�H���R�X�W�H�U���G�L�D�P�H�W�H�U���W�R���W�R�W�D�O���Z�D�O�O���W�K�L�F�N�Q�H�V�V���U�D�W�L�R���Z�D�V�������������“������������
�D�Q�G���W�K�H���U�D�W�L�R�V���R�I���L�Q�W�L�P�D�����P�H�G�L�D�����D�Q�G���D�G�Y�H�Q�W�L�W�L�D���W�R���W�R�W�D�O���W�K�L�F�N�Q�H�V�V���Z�H�U�H�����������“���������������������“�������������������“����������
�U�H�V�S�H�F�W�L�Y�H�O�\�����7�K�H���D�[�L�D�O���V�W�U�H�W�F�K���Z�D�V�������������“�����������Dnd decreased with age of humans. Holzapfel et al. 
have found that the stress-stretch responses for the individual tissues performed pronounced 
mechanical heterogeneity. According to researches and experiments, intima have been found to be 
the stiffest layer and media the softest. Although intima and media have been found the stiffest and 
softest layers, these two layers have performed similar ultimate tensile stresses. These values have 
been found three times smaller than ultimate tensile stresses which have been calculated for adventitia 
�����������“���������N�3�D���F�L�U�F�X�P�I�H�U�H�Q�W�L�D�O���D�Q�G�����������“���������N�3�D���O�R�Q�J�L�W�X�G�L�Q�D�O�������7�K�L�V���V�W�X�G�\���K�D�Y�H���F�O�H�D�U�O�\���V�K�R�Z�H�G���W�K�D�W��
aorta artery need to be modelled as composite structure which consist of three solid mechanically 
relevant layers with differ�H�Q�W�� �P�D�W�H�U�L�D�O�� �S�U�R�S�H�U�W�L�H�V���� �7�K�H�� �L�Q�Q�H�U�P�R�V�W�� �O�D�\�H�U�� �³�L�Q�W�L�P�D�´�� �K�D�Y�H�� �S�H�U�I�R�U�P�H�G��
significant thickness, load-bearing capacity, and mechanical strength compared with other main 
�O�D�\�H�U�V���³�D�G�Y�H�Q�W�L�W�L�D���D�Q�G���P�H�G�L�D�´�����,�Q���R�U�G�H�U���W�R���F�D�O�F�X�O�D�W�H���W�K�H���P�D�W�H�U�L�D�O���S�U�R�S�H�U�W�L�H�V���R�I���W�K�H���O�D�\�H�U�V���Rf aorta artery, 
Holzapfel et al.  harvested thirteen hearts from ten men and three women within 24 hour of their 
death. A scalpel has been used in order to separate three main layers. After separating layers, uniaxial 
tensile tests with bidimensional measurements were performed with the aid computer controlled, 
screw-driven high-precision tensile testing machine. According to Holzapfel et al., the mean density 
�R�I�� �D�G�Y�H�Q�W�L�W�L�D���� �P�H�G�L�D���� �D�Q�G�� �L�Q�W�L�P�D�� �K�D�Y�H�� �E�H�H�Q�� �F�D�O�F�X�O�D�W�H�G�� �G�L�P�H�Q�V�L�R�Q�O�H�V�V�� �D�V�� ���������“������������ ���������“������������
���������“���������� �D�Q�G�� �W�K�H�� �D�Y�H�U�D�J�H�� �V�W�L�I�I�Q�H�V�V�� �K�D�Y�H�� �E�H�H�Q�� �F�D�O�F�X�O�D�W�H�G�� �D�V�� ���������“���������� �N�3�D���� ���������“���������� �N�3�D����
�����������“�������������N�3�D���U�H�V�S�H�F�W�L�Y�H�O�\����[22]. 
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Fig. 3. FGM, single layered, and laminated models of aorta artery 

In Fig. 3, different mechanical models of aorta artery have been demonstrated. Functionally graded 
material (FGM) and laminated composite materials have been chosen to be applied to aorta artery. 
As it can be seen in the middle, also single layered model have been demonstrated. In vivo, aorta 
artery is embedded in tissue and this tissue can be modeled as elastic matrix. In literature many paper 
can be found about static and dynamic analysis of beams and shells with composite materials [23-
25]. 

 
3. Functionally  Graded Materials (FGM) 
 
Functionally graded materials (FGM) are relatively new advanced composite materials compared 
other composite materials. After the invasion of this composite materials, great deals of research have 
been made on the production and applications process of this new material concept. Functionally 
graded materials are characterized by gradually changed physical properties. 
 

�’ 
L �’ �4�B�s
E
�n�7�-

�X

E�’ �5�� 
E�’ �6�� �6 
E�’ �7�� �7�C    (1) 

 
In Eq. (1) �’ �g are the coefficients of temperature defined in the unit of Kelvin and them are unique to 
the constituent materials. 
 

�’ 
L �Ã �’ �h���d
�i
�h�@�5        (2) 

 
In Eq. (2) �’ �h and ���d are the material property and volume fraction of the constituent material j, 
respectively. The sum of volume fraction can be stated as 
 

�Ã ���d
L �s�i
�h�@�5        (3) 

 
To adopt the aorta artery as functionally graded material, a shell model with uniform thickness can 
be used. The volume fraction of the shell can be stated as 
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The power-law exponent is defined by N. The material properties for a two-constituent functionally 
graded can be stated as [26] 
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4. Laminated Composite Materials 
 
Laminated composite materials have attracted much attention due to their higher resistance, lighter 
weight when compared with traditional materials. Laminated composite materials have been widely 
used in aerospace industry, automotive industry and material engineering. Many researches have been 
published papers aimed to investigate the applications of laminated composite materials to shells, 
plates, and beams in case of static and dynamic analyses [27-35]. 
General equations of laminated composite materials can be stated as follows 
 

�P�g�5
L
�I �_�-

�5�?�t�_�-�.�t�_�.�-
�:�B�g�5
E� �̃g�6�5�B�g�5�6�;     (8) 

�P�g�6
L
�I �_�.

�5�?�t�_�-�.�t�_�.�-
�:� �̃g�5�6�B�g�5
E�B�g�6�;     (9) 

 

�R�g�5�6
L �
 �g�5�6�@�g�5�6
L �t�
 �g�5�6�B�g�5�6     (10) 

 

Where �� �g�5 and �� �g�6 �D�U�H�� �W�K�H�� �<�R�X�Q�J�¶�V�� �P�R�G�X�O�X�V�� �L�Q�� �O�R�Q�J�L�W�X�G�L�Q�D�O�� �³���´�� �D�Q�G�� �W�U�D�Q�V�Y�H�U�V�H�� �³���´�� �G�L�U�H�F�W�L�R�Q��
respectively. On the other hand, � �̃g�5�6 �L�V�� �W�K�H�� �3�R�L�V�V�R�Q�¶�V�� �U�D�W�L�R�� �I�R�U�� �Z�K�L�F�K�� �V�W�U�D�L�Q�V�� �D�U�H�� �L�Q�� �O�R�Q�J�L�W�X�G�L�Q�D�O��
�G�L�U�H�F�W�L�R�Q���³���´���D�Q�G���V�W�U�H�V�V���L�Q���W�U�D�Q�V�Y�H�U�V�H���G�L�U�H�F�W�L�R�Q���³���´�����6�L�P�L�O�D�U�O�\�����
 �g�5�6 is the shear modulus. 

Eqs. (8-10) can be written in matrix form as follows 

 


]
�P�5
�P�6
�R�5�6


a
L 
e
�� �5�5 �� �5�6 �r
�� �6�5 �� �6�6 �r
�r �r �� �:�:


i 
]
�B�5
�B�6
�@�5�6


a    (11) 

 

By simplifying Eq. (11) we obtain 
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�<�P�=
L �>�� �?�<�B�=      (12) 

 

Where 

 

�� �5�5
L
�I �-

�5�?�t�-�. �t�.�-
      (13) 

�� �5�6
L �� �6�5
L � �̃6�5
�I �-

�5�?�t�-�. �t�.�-

L � �̃5�6

�I �-

�5�?�t�-�. �t�.�-
   (14) 

�� �6�6
L
�I �.

�5�?�t�-�. �t�.�-
      (15) 

�� �:�: 
L �
 �5�6      (16) 

 

According to Betty-�0�D�[�Z�H�O�O���W�K�H�R�U�H�P���W�K�H���<�R�X�Q�J�¶�V���P�R�G�X�O�X�V���D�Q�G���3�R�L�V�V�R�Q�¶�V���U�D�W�L�R�V���V�K�R�X�O�G���I�X�O�I�L�O���W�K�H��
following equation 

�� �5� �̃6�5
L �� �6� �̃5�6      (17) 

 

5. Concluding remarks 
 
In present paper the most convenient mechanical model of aorta artery have been investigated. Two 
of most used composite materials types have been analyzed. Functionally graded materials and 
laminated composite materials models fundamental equations have been given. As it can be seen from 
Fig. 2, aorta artery has a layered structure which is composed of three main layers which consist of 
five sub-�O�D�\�H�U�V���� �(�D�F�K�� �O�D�\�H�U�� �K�D�V�� �W�K�H�L�U�� �R�Z�Q�� �P�D�W�H�U�L�D�O�� �S�U�R�S�H�U�W�L�H�V�� ���G�H�Q�V�L�W�\���� �<�R�X�Q�J�¶�V�� �P�R�G�X�O�X�V�� �H�W�F�������� �7�R��
conclude it is possible to say that aorta artery can be modelled by using laminated composite material 
theories. Three main layers can be adapted in laminated composite theories or to have more accurate 
result, five sub-layers can be adapted in laminated composite theories in order to investigate the 
mechanical behavior of aorta artery. 
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Abstract 

This paper presents stability analysis of a non-homogeneous plate with porosity effect. Material properties of the plate 
vary in the thickness direction and depend on the porosity. In the solution of the problem, the Generalized Differential 
Quadrature method is used. In the porosity model, uniform porosity distribution is considered. The effects of the porosity 
and material distribution parameters on the critical buckling of the non-homogeneous plate are investigated. 

Keywords: Non-Homogeneous Plate; Porosity; Generalized Differential Quadrature Method. 

1. Introduction 

Non-homogeneous structures, namely functionally graded structures are a type of composites where 
the volume fraction of the materials constituents vary gradually, giving a non-uniform microstructure 
with continuously graded macro properties such as elasticity modulus, density, heat conductivity, etc.. 
Typically, in non-homogeneous structures, one face of a structural component is ceramic that can resist 
severe thermal corrosion effects and the other face is metal which has excellent structural strength.  

Non-homogeneous structures have been an area of intensive research over the last decade. Because of 
the wide material variations and applications, it is important to study the static and dynamic analysis 
of Non-homogeneous structures, such as plates. Therefore, an intensive study has been conducted 
recently on vibration of structures made of FGMs (i.e., [1�±42]). 

In the literature, some studies about the porosity effect in the Non-homogeneous structures are; 
Wattanasakulpong and Ungbhakorn [43] investigated vibration analysis of porous  FG beams. Mechab 
et al. [44,45] examined free vibration analysis of a FG nano-plate resting on elastic foundations with 
�W�K�H�� �S�R�U�R�V�L�W�L�H�V�� �H�I�I�H�F�W���� �ù�L�P�ú�H�N�� �D�Q�G�� �$�\�G�Õ�Q [46] examined forced vibration of FG microplates with 
porosity effects based on the modified couple stress theory. Jahwari and Naguib [47] investigated FG 
viscoelastic porous plates with a higher order plate theory and statistical based model of cellular 
distribution. Vibration characteristics of FG beams with porosity effect and various thermal loadings 
are investigated by [48-49]. Linear/ nonlinear���D�Q�D�O�\�V�L�V�� �R�I�� �E�X�F�N�O�L�Q�J�� �D�Q�G�� �Y�L�E�U�D�W�L�R�Q�� �R�I�� �)�*�� �E�H�D�P�V��
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�U�H�L�Q�I�R�U�F�H�G�� �S�R�U�R�X�V�� �Q�D�Q�R�F�R�P�S�R�V�L�W�H�� �D�U�H�� �L�Q�Y�H�V�W�L�J�D�W�H�G�� �E�\�� �&�K�H�Q�� �H�W�� �D�O���� �>�����@�� �D�Q�G�� �.�L�W�L�S�R�U�Q�F�K�D�L�� �H�W�� �D�O���� �>�����@����
�$�N�E�D�ú���>�����@���L�Q�Y�H�V�W�L�J�D�W�H�G���V�W�D�W�L�F���D�Q�G���Y�L�E�U�D�W�L�R�Q���R�I���)�*���S�R�U�R�X�V���S�O�D�W�H�V���E�\���X�V�L�Q�J���1�D�Y�L�H�U���V�R�O�X�W�L�R�Q�� 

�6�W�D�E�L�O�L�W�\���D�Q�D�O�\�V�L�V���R�I���D���V�L�P�S�O�\���V�X�S�S�R�U�W�H�G���Q�R�Q���K�R�P�R�J�H�Q�H�R�X�V���S�O�D�W�H���L�V���L�Q�Y�H�V�W�L�J�D�W�H�G���Z�L�W�K���S�R�U�R�V�L�W�\���H�I�I�H�F�W���E�\��
�X�V�L�Q�J��Generalized Differential Quadrature Method���E�D�V�H�G���R�Q���W�K�H���F�O�D�V�V�L�F�D�O���S�O�D�W�H���W�K�H�R�U�\�����7�K�H���H�I�I�H�F�W�V���R�I��
�W�K�H�� �S�R�U�R�V�L�W�\�� �D�Q�G�� �P�D�W�H�U�L�D�O�� �G�L�V�W�U�L�E�X�W�L�R�Q�� �S�D�U�D�P�H�W�H�U�V�� �R�Q�� �W�K�H���F�U�L�W�L�F�D�O�� �E�X�F�N�O�L�Q�J�� �O�R�D�G�V�� �R�I�� �W�K�H���Q�R�Q��
�K�R�P�R�J�H�Q�H�R�X�V���S�O�D�W�H���D�U�H���H�[�D�P�L�Q�H�G���� 

2. Formulations 

�$���V�L�P�S�O�\���V�X�S�S�R�U�W�H�G���U�H�F�W�D�Q�J�X�O�D�U���Q�R�Q���K�R�P�R�J�H�Q�H�R�X�V���S�R�U�R�X�V���S�O�D�W�H���Z�L�W�K���W�K�L�F�N�Q�H�V�V���K���L�Q���; �����G�L�U�H�F�W�L�R�Q�����W�K�H��
�O�H�Q�J�W�K�V�� �R�I���/�;���D�Q�G���/�<���W�K�H�� �L�Q���; �����D�Q�G���; �����G�L�U�H�F�W�L�R�Q�V���� �U�H�V�S�H�F�W�L�Y�H�O�\���D�V�� �V�K�R�Z�Q�� �L�Q�� �)�L�J�X�U�H�� ������ �7�K�H�� �Q�R�Q��
�K�R�P�R�J�H�Q�H�R�X�V���S�O�D�W�H���L�V���V�X�E�M�H�F�W�H�G���W�R���E�L�D�[�L�D�O���S�O�D�Q�H���F�R�P�S�U�H�V�V�L�Y�H���O�R�D�G�V���1�����L�Q���E�R�W�K�����; �����D�Q�G���; �����G�L�U�H�F�W�L�R�Q�V����
�U�H�V�S�H�F�W�L�Y�H�O�\���� 
 

 
Fig. 1. A �Q�R�Q���K�R�P�R�J�H�Q�H�R�X�V plate subjected biaxial compressive loads with porosity. 

 
�7�K�H�� �H�I�I�H�F�W�L�Y�H�� �P�D�W�H�U�L�D�O�� �S�U�R�S�H�U�W�L�H�V�� �R�I�� �W�K�H���Q�R�Q���K�R�P�R�J�H�Q�H�R�X�V���S�O�D�W�H�����3���� �V�X�F�K�� �D�V���� �<�R�X�Q�J�¶�V�� �P�R�G�X�O�X�V���(����
�3�R�L�V�V�R�Q�¶�V���U�D�W�L�R���������D�Q�G���V�K�H�D�U���P�R�G�X�O�X�V���*���Y�D�U�\���F�R�Q�W�L�Q�X�R�X�V�O�\���L�Q���W�K�H���W�K�L�F�N�Q�H�V�V���G�L�U�H�F�W�L�R�Q�����; �����D�[�L�V�����D�F�F�R�U�G�L�Q�J��
�W�R���D���S�R�Z�H�U���O�D�Z���I�X�Q�F�W�L�R�Q�����,�Q���W�K�H���S�R�U�R�V�L�W�\���P�R�G�H�O�����W�K�H���S�R�U�R�V�L�W�\���V�S�U�H�D�G���X�Q�L�I�R�U�P�O�\���W�K�R�X�J�K���K�H�L�J�K�W���G�L�U�H�F�W�L�R�Q����
�$�F�F�R�U�G�L�Q�J���W�R���W�K�H���S�R�Z�H�U���O�D�Z���G�L�V�W�U�L�E�X�W�L�R�Q�����W�K�H���H�I�I�H�F�W�L�Y�H���P�D�W�H�U�L�D�O���S�U�R�S�H�U�W�\���Z�L�W�K���S�R�U�R�V�L�W�\���F�D�Q���E�H���H�[�S�U�H�V�V�H�G��
�D�V���I�R�O�O�R�Z�V�� 
 

  ����������������   ���������������������������������������������������������� 

 
�Z�K�H�U�H���D�����D���������� �L�V�� �W�K�H���Y�R�O�X�P�H�� �I�U�D�F�W�L�R�Q�� �R�I�� �S�R�U�R�V�L�W�L�H�V�����:�K�H�Q���D� ������ �W�K�H�� �S�O�D�W�H�� �E�H�F�R�P�H�V�� �S�H�U�I�H�F�W���Q�R�Q��
�K�R�P�R�J�H�Q�H�R�X�V���S�O�D�W�H�� 
 
According to classical plate theory, the strain- displacement relations are expressed as  
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�����������������������������������������������������������������������������������������Û�Ñ�-�Ñ�.

L
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�@�Ý�Ñ�-�Ñ�.

�4 
F
�ª�. �t

�! �Ñ�-�! �Ñ�.
�A�������������������������������������������������������������������������������������������������������������������������������F������ 

�Z�K�H�U�H���X�����Y�����Z���D�U�H���; ������ �;�����D�Q�G���; �����F�R�P�S�R�Q�H�Q�W�V�� �R�I�� �W�K�H�� �G�L�V�S�O�D�F�H�P�H�Q�W�V�� �U�H�V�S�H�F�W�L�Y�H�O�\����The constitutive 
equations of the �Q�R�Q���K�R�P�R�J�H�Q�H�R�X�V plate are as follows:  
 

                            �ê�g�h�:�: �7�á�=�; 
L
�¾�:�Ñ�/ �á�Ô�;

�:�5�?�� �. �;

c�å�Ý�Þ�ß�Ü�Ü�Ý
E�:�s
F �å�;�Ý�Ü�Ý
g                                                               (3) 

 
The stress resultants of the �Q�R�Q���K�R�P�R�J�H�Q�H�R�X�V plate are given as follows; 
 

                �0�Ü�Ý
L �ì �ê�g�h
�4�ä�9�Û

�?�4�ä�9�Û
�@�:�7�������E
L �F,  �/ �Ü�Ý
L �ì �ê�g�h

�4�ä�9�Û

�?�4�ä�9�Û
�: �7���@�:�7,  �3�Ü�Ý
L �ì �ê�g�h

�4�ä�9�Û

�?�4�ä�9�Û
�@�:�7�������E
M�F              (4) 

 
where �0�Ü�Ý, �/ �Ü�Ý and �3�Ü�Ý are normal force, moment and shear forces, respectively. The stability equation 
of the �Q�R�Q���K�R�P�R�J�H�Q�H�R�X�V plate is given as follows: 
 

                                   �Ø�8�å
F
�º�-
k�5�?�� �. 
o

�º�-�º�/ �?�º�.
�. ���@�0�5

�4 �ª�. �t

�ª�Ñ�-
�. 
E�0�6

�4 �ª�. �t

�ª�Ñ�.
�.�A
L �r                                                (5) 

 
where �0�5

�4 and  �0�6
�4 are the pre-buckling force resultants, �#�5, �#�6, �#�7 are  expressed as follows: 

 

                                 �:�#�5�á�#�6�á�#�7�; 
L �ì �' �:�: �7�á�=�;�:�s�á�: �7�á�: �7
�6�;

�4�ä�9�Û

�?�4�ä�9�Û
�@�:�7                                             (6) 

The boundary conditions at the simple supported plate ends are as follows; 

                        �R�:�: �5�á�r�; 
L �R�:�.�Ñ�á�r�; 
L �S�:�r�á�: �6�; 
L �S�:�r�á�.�Ò�; 
L �r                                          (7a) 

          �/ �:�:�5�á�r�; 
L �/ �:�.�Ñ�á�: �6�; 
L �/ �:�:�5�á�.�Ò�; 
L �/ �:�r�á�: �6�; 
L �r              (7b) 

In the solution of the governing equations, the Generalized Differential Quadrature Method is 
used. In the differential quadrature method, the derivatives of a function are written as linear 
summation of the values at all points in the domain [53-56]; 

�×�:�Û�;�ê�:�ë�Õ�;

�×�ë�:�Û�; 
N�Ã �$�Ý�Ü
�:�ã�;�á

�Ü�@�5 �S�:�T�Ü�;                                                                (8) 

where n is the number of the points in the domain, p is the order of derivative in the function, 
�$�Ý�Ü

�:�ã�; is the weighting coefficient with pth derivative of the function with respect to x. The weight 
coefficients for first-order derivative (p=1) are as follows [53,54]; 
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�Ý�@�5�á�Ü�· �Ý�� �������������E
L �F��������������
�E
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   For the higher order derivatives, the weight coefficient is expressed as follows: 

                                           �$�Ý�Ü
�:�ã�; 
L �Ã �$�Ý�å

�:�5�;�$�å�Ü
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�å�@�5      (i,j=1,n)                                            (10) 
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For determined the sampling points in the domain, Chebyshev�±Gauss�±Lobatto grid points is 
employed[53,54]; 

                                          �T�Ý
L
�5

�6
�B�s
F �?�K�O�@

�Ý�?�5

�á�?�5
�è�A�C      (j=1,nx1)                                         (11a) 

                                          �T�Ü
L
�5

�6
�B�s
F �?�K�O�@

�Ü�?�5

�á�?�5
�è�A�C      (i=1,nx2)                                         (11b) 

where nx1 and nx2 are the number of the grid points in X1 and X2 direction, respectively. 

Substituting eqs. (8-11) into eq. (5), and then using Generalized Differential Quadrature 
discretization, the governing equations of the problem can be obtained as follows; 
 

�@�Ã �$�Ý�Þ
�:�8�;�á�ã�-

�Þ�@�5 �R�Þ�Ý
E�t �Ã �Ã �$�Ý�Þ
�:�6�;�á�ã�.

�à �@�5
�á�ã�-
�Þ�@�5 �$�Ü�à

�:�6�;�R�Þ�à 
E�Ã �$�Ü�Þ
�:�8�;�á�ã�.

�Þ�@�5 �R�Þ�Ü�A
F
�º�-
k�5�?�� �. 
o

�º�-�º�/ �?�º�.
�. ���@�0�5

�4�Ã �$�Ý�Þ
�:�6�;�á�ã�-

�Þ�@�5 �R�Þ�Ý
E�0�6
�4�Ã �$�Ü�Þ

�:�6�;�á�ã�.
�Þ�@�5 �R�Þ�Ü�A
L �r  (j=1,nx1), (i=1,nx2), (k=1,p+1)      (12) 

 

The dimensionless critical buckling load can be expressed as follows; 

                                                     �0
%�a�p
L �0�Ö�å
���Å�É

�.

�¾�³ ���Û�/                                       (13)  

3. Numerical Results 

In the numerical results, the dimensionless critical buckling loads �0
%�a�p��are presented in figures for 
different porosity parameters and material distributions. The �U�H�F�W�D�Q�J�X�O�D�U�� �Q�R�Q���K�R�P�R�J�H�Q�H�R�X�V porous 
plate considered in numerical examples is made of Zirconia (E=151GPa, ��=0.3) and Steel (E=210GPa, 
��=0.3). The top surface material of the �Q�R�Q���K�R�P�R�J�H�Q�H�R�X�V plate is Zirconia, the bottom surface material 
of the �Q�R�Q���K�R�P�R�J�H�Q�H�R�X�V plate is Steel. When k=0 and k� �’�����W�K�H���P�D�W�H�U�L�D�O���R�I���W�K�H���S�O�D�W�H���J�H�W�V���K�R�P�R�J�H�Q�H�R�X�V��
Zirconia and homogeneous  Steel, respectively, according to Eq. (1). The dimensions of the �Q�R�Q��
�K�R�P�R�J�H�Q�H�R�X�V plate are considered as follows: h = 0.2 m, LX =3 m, LY=3 m in the numerical examples. 
In the numerical calculations, the numbers of the grid points are taken as nx1=nx2=20.  

In figure 2, the effect of the material distribution parameter k on the dimensionless critical buckling 
loads of the porous �Q�R�Q���K�R�P�R�J�H�Q�H�R�X�V plate is presented for a=0. As seen from figure 2, the 
dimensionless critical buckling loads increase with increase in the power-law exponents k. With 
increase in the k, the plate gets to fully Steel. The Young's modulus of Steel is bigger than Zirconia�¶�V. 
As it is expected, with increase the k, the Young's modulus and bending rigidity of the plate increase 
according to equation (1). So, the strength of material increases and the critical buckling loads increases 
naturally.  
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Fig. 2. The effect of the material distribution parameter k on the dimensionless critical buckling loads �0
%�a�p. 
 

Figure 3 displays the relationship between of porosity parameter a and the dimensionless critical 
buckling loads of the �Q�R�Q���K�R�P�R�J�H�Q�H�R�X�V porous plate for different the material distribution parameters. 
It is seen from figure 3 that the dimensionless critical buckling loads decrease with increase with 
increase porosity parameter a. This is because, with increase in the porosity, the strength of the material 
decreases. So, the critical buckling loads decreases naturally. It shows  that Porosity parameters play 
an important role on the stability of the �Q�R�Q���K�R�P�R�J�H�Q�H�R�X�V porous plates. 
 

 
Fig. 3. The effect of the porosity parameter a on the dimensionless critical buckling loads �0
%�a�p���ˆ�‘�”���†�‹�ˆ�ˆ�‡�”�‡�•�–��the 

material distribution parameters. 
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4. Conclusions 
 
In this paper, s�W�D�E�L�O�L�W�\�� �D�Q�D�O�\�V�L�V�� �R�I�� �D�� �V�L�P�S�O�\�� �V�X�S�S�R�U�W�H�G�� �S�R�U�R�X�V�� �Q�R�Q���K�R�P�R�J�H�Q�H�R�X�V�� �S�O�D�W�H�� �L�V�� �V�W�X�G�L�H�G�� �E�\��
�X�V�L�Q�J��Generalized Differential Quadrature Method. Material properties of the plate depend on both 
position and porosity. The Classical plate theory is used in the kinematic model of the plate. �7�K�H���H�I�I�H�F�W�V��
�R�I�� �W�K�H�� �S�R�U�R�V�L�W�\�� �D�Q�G�� �P�D�W�H�U�L�D�O�� �G�L�V�W�U�L�E�X�W�L�R�Q�� �S�D�U�D�P�H�W�H�U�V�� �R�Q�� �W�K�H�� �F�U�L�W�L�F�D�O�� �E�X�F�N�O�L�Q�J�� �O�R�D�G�V�� �R�I�� �W�K�H�� �Q�R�Q��
�K�R�P�R�J�H�Q�H�R�X�V���S�O�D�W�H���D�U�H���S�U�H�V�H�Q�W�H�G���L�Q���I�L�J�X�U�H�V����Numerical results show that the porosity has important 
role on the stability of the �Q�R�Q���K�R�P�R�J�H�Q�H�R�X�V plate. 
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Abstract 

Over the past few years there has been sustainable development in the steel and composite construction technology. One of 
the recent additions to such developments is the I-girders with corrugated web beams. The use of these new generation beams 
results in a range of benefits, including flexible, free internal spaces and reduced foundation costs. Corrugated web beams are 
built-up girders with a thin-walled, corrugated web and wide plate flanges. The thin corrugated web affords a significant 
weight reduction of these beams, compared with hot-rolled or welded ones. In this paper, optimum design of corrugated 
composite beams is presented. A recent stochastic optimization algorithm coded that is based on hunting search is used for 
obtaining the solution of the design problem. In the optimization process, besides the thickness of concrete slab and studs, web 
height and thickness, distance between the peaks of the two curves, the width and thickness of flange are considered as design 
variables. The design constraints are respectively implemented from BS EN1993-1:2005 (Annex-D, Eurocode 3) BS-8110 and 
DIN 18-800 Teil-1. Furthermore, these selections are also carried out such that the design limitations are satisfied and the 
weight of the composite corrugated web beam is the minimum.  

Keywords: Composite structures; corrugated beams; optimum design; structural optimization; stochastic search methods; 
hunting search algorithm. 

1. Introduction 
 

The use of long span steel beams results in a range of benefits, including flexible, free internal spaces and 
reduced foundation costs. Many large clear-span design solutions are also well adapted to simplify the 
integration of mechanical or utility services. Corrugated steel web beams provide economical solution and 
pleasing appearance for space structures. In steel construction applications, the web part of beam usually 
carries the compressive stress and transmits shear in the beam while the flanges support the applied external 
loads. By using greater part of the material for the flanges and thinner web, materials saving could be 
achieved without weakening the load-carrying capability of the beam. In this case, the compressive stress 
in the web has exceeded the critical point prior to the occurrence of yielding, the flat web loses its stability 
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and deforms transversely. Corrugated web beams shown in Figure 1 are built-up girders with a thin-walled, 
corrugated web and plate flanges. 

 

 

Fig. 1 Geometric properties of Corrugated Web Beam 

 

Corrugated structure of the web cross-section not only increases the resistance of the beam against to shear 
force and other possible local effects, but also prevents the buckling due to loss of moment of inertia before 
the plastic limit. This specific structure of the web leads to a decrease in the beam unit weight and increase 
in the load carrying capacity. These efficient construction materials, commonly used in developed countries 
over years, can be utilized at the roofs as an alternative to space truss and roof truss, at the slabs as floor 
beams or columns under axial force. Although the designers are aware of the advantages of the composite 
systems to be produced with that beams, there is still not a detailed technical specification about their design 
and behavior. The first studies on the corrugated web beams were focused on the vertically trapezoidal 
corrugation. Elgaaly investigated the failure mechanisms of trapezoidal corrugation beams under different 
loading conditions, namely shear mode [1], bending mode [2]. They found that the web could be neglected 
�L�Q�� �W�K�H�� �E�H�D�P�� �E�H�Q�G�L�Q�J�� �G�H�V�L�J�Q�� �F�D�O�F�X�O�D�W�L�R�Q�� �G�X�H�� �W�R�� �L�W�V�� �L�Q�V�L�J�Q�L�I�L�F�D�Q�W���F�R�Q�W�U�L�E�X�W�L�R�Q�� �W�R�� �W�K�H�� �E�H�D�P�¶�V�� �O�R�D�G-carrying 
capability. Besides that, the two distinct modes of failure under the effect of patch loading were dependent 
on the loading position and the corrugation parameters. These are found agreeable to the investigation by 
Johnson and Cafolla and were further discussed in their writings [3]. In addition, the experimental tests 
conducted by Li et al. [4] demonstrated that the corrugated web beam has 2 times higher buckling resistance 
than the plane web type. According to Pasternak et al., [5], the buckling resistance of presently used 
sinusoidal corrugated webs is comparable with plane webs. 
 
In the present study, the ultimate load carrying capacities of optimally designed steel corrugated web beams 
are tested in a self-reacting frame to perform critical loads for all tested specimens. For this purpose, six 
corrugated beams are tested in a self-reacting frame to determine the ultimate load carrying capacities of 
mentioned beams under different loading conditions. The tested specimens are designed by using one of 
the stochastic search techniques called hunting search optimization method. This meta-heuristic algorithm 
is successfully applied to the optimum design problems of steel cellular beams where the design constraints 
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are implemented from BS EN1993-1:2005 (Annex-D, Eurocode 3) BS-8110 and DIN 18-800 Teil-1 
provisions [6-10]. In this formulation, the thickness of concrete slab and studs, web height and thickness, 
distance between the peaks of the two curves, the width and thickness of flange in the composite corrugated 
web beams are considered as design variables. The computational steps of the optimization algorithm and 
the design process are not demonstrated in the paper due to space limitations, yet the detailed 
implementation specifics of the hunting search method and optimum design process of corrugated web 
beams can be found in Erdal et al. [11] with parameter sets. 

 
2. The Design of Composite Corrugated Web Beams 
 
The ultimate state design of a steel beam necessitates check of its strength and serviceability. The 
computation of the strength of a corrugated web beam is determined by considering the interaction of 
flexure and shear at the sinusoidal web. Consequently, the constraints to be considered in the design of a 
corrugated web beam include the displacement limitations, transverse force load carrying capacity of webs, 
normal force load carrying capacity of flanges, lateral torsional buckling capacity of the entire span, rupture 
of the welded joint, formation of a flexure mechanism and practical restrictions for corrugated web and 
flanges [9-11].  

 
2.1. Stochastic Optimization Techniques 

 
A combinatorial optimization problem requires exhaustive search and effort to determine an optimum 
solution which is computationally expensive and in some cases may even not be practically possible. Meta-
heuristic search techniques are established to make this search within computationally acceptable time 
period. Amongst these techniques are simulated annealing [12], evolution strategies [13], particle swarm 
optimizer [14], tabu search method [15], ant colony optimization [16], harmony search method [17], genetic 
algorithms [18] and others [19-22]. All of these techniques implement particular meta-heuristic search 
algorithms that are developed based on simulation of a natural phenomenon into numerical optimization 
procedure. They have gained a worldwide popularity recently and have proved to be quite robust and 
effective methods for finding solutions to discrete programming problems in many disciplines of science 
and engineering, including structural optimization.  

 
2.1.1. Hunting Search Algorithm 

 
Hunting search method based optimum design algorithm has six basic steps, which is outlined in the 
following [23-24]. 
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Step 1 Initializing design algorithm and parameters: HGS defines the group size which is the number of 
solution vectors in hunting group, MML represents the maximum movement toward the leader and HGCR 
is hunting group consideration rate which varies between 0 and 1.  

 

Step 2 Generation of hunting group: On the basis of the number of hunters (HGS), hunting group is 
initialized by selecting randomly sequence number of steel sections (I i) for each group. 

                                                                       (1) 

where; the term r represents a random number between 0 and 1, Imin is equal to 1 and Imax is the total number 
of values in the discrete set respectively. n is the total number of design variables. 

Step 3 Moving toward the leader: �1�H�Z���K�X�Q�W�H�U�V�¶���S�R�V�L�W�L�R�Q�V���D�U�H���J�H�Q�H�U�D�W�H�G���E�\���P�R�Y�L�Q�J���W�R�Z�D�U�G���W�K�H���O�H�D�G�H�U���K�X�Q�W�H�U�� 

                                                                       (2) 

where; I i 
L is the position value of the leader for the i-th variable. 

 

Step 4 Position correction-cooperation between hunters: After moving toward the leader, hunters tend to 
choose another position to conduct the `hunt' efficiently, i.e. better solutions. Position correction is 
performed in two ways, one of which is real value correction and the other is digital value. In this study, 
real value correction is employed for the position correction of hunters. 

                                                                (3) 

Step 5 Reorganizing the hunting group: Hunters must reorganize themselves to get another chance to find 
the global optimum. If the difference between the objective function values obtained by the leader and the 
worst hunter in the group becomes sm�D�O�O�H�U���W�K�D�Q���D���S�U�H�G�H�W�H�U�P�L�Q�H�G���F�R�Q�V�W�D�Q�W�����01) and the termination criterion 
is not satisfied, then the group reorganized. By employing the Eq. 6, leader keeps its position and the others 
randomly select positions. 

                                                                        (4) 

Where; I i 
L is the position value of the leader for the i-th variable, r represents the random number between 

0 and 1, min(Ii) and max(Ii) are min. and max. values of variable I i, respectively, EN refers to the number 
of times that the hunting group has trapped until this step. �. and �� are determine the convergence rate of 
the algorithm. 
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Step 6 Termination: The steps 3 and 5 are repeated until a pre-assigned maximum number of cycles is 
reached. 

 

3. Optimum Design Problem 
 
The design of a composite corrugated web beam requires the selection of width and thickness of a plate 
from which the corrugated web is to be produced, distance between the peak points of each corrugate, the 
length of corrugate web, the selection of width and thickness of a plate for upper and lower flanges in the 
beam, thickness of the concrete slab and connection members between the concrete slab and corrugated 
beam are considered as design variables. For this purpose, a design pool is prepared. The optimum design 
problem formulated considering the design constraints explained in the previous sections yields the 

following mathematical model [6-11]. Find a integer design vector where 

 is the sequence number of for the width of upper and lower flanges,  is the sequence number for the 

thickness values of upper and lower flanges,  is the thickness of corrugated web, is distance between 

the peak points of each corrugate web and the height of corrugate web,  thickness of the concrete slab 

and is the connection members between the concrete slab and corrugated beam. Hence the design 

problem turns out to be minimize the weight of the composite corrugated web beam ( ). 

 

               
                        (5) 

 

where,  density of steel,  the width of flange,  thickness of flange,  span of beam, height of 

corrugated web,  thickness of corrugated web ve  span of beam before corrugation process. the 

density of concrete class,  the section area of the concrete slab,  the net section are of connection 

members between the concrete slab and corrugated beam and  the number of connection members 

between the concrete slab and corrugated beam along beam span. The demonstration of composite 
corrugated web beams under loading conditions is given in Figure 2 with more detail.  
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Fig. 2. The demonstration of Composite Corrugated Web Beam 

 

Design of a corrugated beam requires the satisfaction of some geometrical restrictions that are formulated 
through Eqns. (6-9). 

Web dimensions: 

                       (6)                                         (7) 

Flange dimensions: 

                       (8)                                       (9) 

 

3.1. Transverse load carrying capacity of corrugated webs 

 
Based upon the experimental tests and finite element analysis results, the following design procedure has 
been suggested: The corrugated web is regarded as an orthotropic plate with rigidities Dx and Dy. According 
to [5], the following formula therefore applies to the corrugated web: 

                                          ,  for                                  (10) 

For transverse buckling stress of corrugated web; 

                                                                                                  (11) 

For slenderness parameter of corrugated web;    
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                                                                                                                    (12) 

With the buckling coefficient of corrugated web; 

                                                                                                                         (13) 

the transverse force load carrying capacity for the corrugated web finally results in: 

                                                                                                      (14) 

3.2. Normal load carrying capacity of flanges 

 
In determining the normal bearing force of the flanges, a distinction must be made between tensile and 
compressive stresses. In the case of tensile stress, the load carrying capacity of the flange is derived as 
follows: 

                                                                                                                    (15) 

Reformulation of the expression for �%��= 1 leads to the following elastic limit stress: 

                                                                                                                       (16) 

Therefore the reduced normal force on the flange: 

                                                                                                           (17)                 

Global failure of stability - lateral buckling of the flange - is equivalent to the verification against torsional-
flexural buckling. If the restraining effect of the web is ignored, the torsional-flexural verification is carried 
out as the �E�X�F�N�O�L�Q�J���Y�H�U�L�I�L�F�D�W�L�R�Q���I�R�U���W�K�H���³�L�V�R�O�D�W�H�G�´���I�O�D�Q�J�H��in accordance with [5]. The following condition 
for the distance between lateral supports is obtained:  

                                                                                                  (18)            

      

3.3. Behavioral and Geometrical Restrictions of Composite Beam 
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The moment capacity of composite corrugated web beam with sinusoidal web function () has been 

defined as following equations.  

 
For the neutral axis on concrete slab; 

                                                       and                                      (19) 

                                                                                           (20)  

 

For the neutral axis on steel profile; 

                                           and                          (21) 

                                                         (22) 

 

In these equations,  height of steel section,  distance between the centre of steel section and upper part, 

 distance between the centre of pressure region of steel section and upper part,  distance between the 

centre of tension region of steel section and lower part,  height of concrete slab,  effective slab width, 

 height of steel deck,   yield strength of steel,  compressive strength of concrete,  and are 

coefficients for steel and concrete materials . 

 

3.4. The Design of Concrete Slab for Corrugated Web Beams 

 

The effective length of concrete slab and number of shear connectors have been calculated for OGK_330 
corrugated web beams according to EC4, BS-5950 Part-3, Section 3-1. 

                                                  �>�Ø�Ù�Ù�@
�ß�,
�8


L
�8�;�4�Ö�à

�8

L �s�s�y�á�w�?�I                                                        (23) 
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                                                     �4�Ì 
L �r�á�{�w�B�ì �#�Ô                                                                    (24) 

 

In these equations, beff is effective length of concrete slab and l0 is span of beam. 

 

                                                        �4�¼
L �r�á�v�w�B�Ö�è�>�Ø�Ù�Ù�D�Ö                                                                  (25) 

 

In the equation 25, Rc is compressive force of concrete, hc the depth of the concrete slab, Aa is section area 

of steel, h height of steel section, hp the depth of concrete slab at tab of the deck. If plastic neutral axis is 

on the upper flange of steel section, moment is defined as;  

                                                �/ �ã�ß�á�Ë�×
L �4�Ì
�Û

�6

E�4�¼�@

�Û�Î

�6

E�D�ã�A                                                          (26) 

 

The calculation of shear connectors for composite corrugated web beams has been defined in equations 41, 

42 and 43. In these equations, fu maximum tensile stress of steel shear connectors, h the height of shear 

connectors, d �W�K�H���G�L�D�P�H�W�H�U���R�I���V�K�H�D�U���F�R�Q�Q�H�F�W�R�U�V������v �V�D�I�H�W�\���I�D�F�W�R�U�����D�Q�G���.���L�V���F�R�Q�V�W�D�Q�W�� 

                                               �2�Ë�×
L �r�á�t�{�Ù�@�6
¥�Ù�Î�Ö�¾�Î
�
�á

                                                              (27) 

                                                   �2�Ë�×
L �r�á�z�B�è
�� �×�.

�8�
�á
                                                                    (28)                                  

                                                 �Ù
L �r�á�t �@
�Û

�×

E�s�A
Q�s�\                                                            (29) 

 

The depth of concrete slab (hc) and forces (Rs, Rc and Mpl,Rd ) are calculated for OGK_330 corrugated web 
beam under point loading. 

 

Rs=0,95x355x16x160=863,36 kN 

 

�™�<� ���������5s=Rc=0,45x20x1175xhc ; hc<=81,64 mm ;hc=8cm. 
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Rc=0,45x20x1175x80=846 kN 

 

Mpl,Rd=863,36x173+846x70=208,58kNm=21,262 tm 

 

 

 

4. Design Example 

 
Optimum design algorithms presented are used to design a corrugated steel web beam (OGK_330) with 5-
m span shown in Fig. 3. The beam is subjected to point loading. The upper flange of the beam is laterally 
supported by the floor system that it supports. The maximum displacement is limited to 17 mm. The 
modulus of elasticity is 205 kN/mm2. 

 
Fig. 3. Loading of 5-m span Corrugated Web beam 

The design example is solved by hunting search algorithm (HSA). The maximum number of generations is 
taken as 5000 (Table 1).  

Table 1. The Parameters of HAS and FFO Techniques 

Technique             The values of parameters 

 HSA    
             Ramax = 0.01,  

          Ramin = 0  �.��=0.9,��� ��������,IE=25,  

 

The result of the sensitivity analysis carried out for the HSA parameters is given in Table 2.  In steel 
construction applications, the web part of beam usually carries the compressive stress and transmits shear 
in the beam while the flanges support the applied external loads. By using greater part of the material for 
the flanges and thinner web, materials saving could be achieved without weakening the load-carrying 
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capability of the beam. In this case, the compressive stress in the web has exceeded the critical point prior 
to the occurrence of yielding, the flat web loses its stability and deforms transversely. 

 

Table 2. Optimum Design of Corrugated Beam with 5-m Span 

Optimum 
Section 

Conrete Part Steel Part Minimum 
Weight 

(kg) (mm) (mm)  (mm) h(mm)  (mm) Hc (mm) Lc (mm) 

OGK_330 80 1175 44 5 330 9 43 155 1317.38 

 

The optimum corrugated web beam should be produced such that it should have 5 mm web thickness 330 
mm web height, 9 mm flange thickness and 160 mm flange width for steel part and 80 mm slab depth, 1175 
mm effective length of slab, 44 shear connectors for concrete part. HSA produces 1317.38 kg weight for 
composite corrugated web beam OGK_330. The dimensions of OGK_330 and OGK_500 beam are also 
given in Table 2. The maximum value of the strength ratio is 0.98 which is almost upper bound. This reveals 
the fact that the strength constraints are dominant in the problem. The design history curve for HSA 
techniques is shown in Fig. 4. It is apparent from the figure that HSA method performs good convergence 
rate and acceptable solution in this design problem.  

 

 

 

Fig. 4. Design History Graphic of 5-m Corrugated Web Beam 

 
5. Conclusion 
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This study concerns with the application of a hunting search algorithm to demonstrate the robustness of the 
proposed algorithm and to find the optimum design of composite corrugated web beams. The design 
algorithm is mathematically simple but effective in finding the solutions of optimization problems. Fly-
back mechanism is employed for handling the problem constraints and feasible ones being candidate 
solutions to give the minimum weight are determined. A composite corrugated web beam example is 
designed to illustrate the efficiency of the algorithm. In the optimization process, besides the thickness of 
concrete slab and studs, web height and thickness, distance between the peaks of the two curves, the width 
and thickness of flange are considered as design variables. The optimum design attained by HSA method 
clearly shows that the proposed method give good solution. In view of the results obtained, it can be 
concluded that the HAS method is an efficient and robust technique that can successfully be used in 
optimum design of corrugated web beams. 
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