Cilt 22, Sayı 2, Sayfalar 85 - 92 2017-08-29

Performance Study of Bat Algorithm and Clonal Selection Algorithm for Optimization Tasks
YARASA ALGORİTMASI VE KLONAL SEÇİM ALGORİTMASININ OPTİMİZASYON PROBLEMLERİ İLE PERFORMANS ANALİZİ

Ezgi DENİZ ÜLKER [1]

27 25

Evolutionary algorithms are preferred by many researchers in different areas for optimization tasks. It is quite important to find optimum points of problems with less number of iterations. In this paper, performance analysis of two powerful optimization algorithms; bat algorithm and clonal selection algorithm are studied using well-known benchmark functions. The experimental results show that bat algorithm outperforms clonal selection algorithm on most of the selected problems. It is also seen that bat algorithm can produce high quality results even at the first stages of iterations. This paper can be used as guidance of performance comparisons for future studies.

 Evrimsel algoritmalar, özellikle optimizasyon alanında çalışan bir çok farklı araştırmacı tarafından tercih edilmektedir. Evrimsel algoritmaların verilen problemleri optimize etmenin yanı sıra, bu problemleri az sayıda iterasyon kullanarak çözmeleri bu algoritmalar için önemli bir ayırt edici özelliktir. Bu çalışmada, optimizasyon alanında verimliliği kanıtlanmış iki evrimsel algoritma; yarasa algoritması ve klonal seçim algoritması test fonksiyonları kullanılarak kıyaslanmıştır. Kıyaslama yapılan test fonksiyonlarından elde edilen sonuçlara göre, yarasa algoritması klonal seçim algoritmasına göre daha iyi bir performans göstermiştir. Ayrıca, yarasa algoritması optimizasyonun ilk safhalarında dahi yüksek çözüm kalitesine ulaşmıştır. Bu analiz, gelecek çalışmalar için evrimsel algoritmaların performans kıyaslamaları açısından  rehber olarak kullanılabilir niteliktedir.

  • Adarsh, B. R., Raghunathan, T., Jayabarathi, T., and Yang, X. S. (2016) Economic dispatch using chaotic bat algorithm, Energy, 96, 666-675. doi: 10.1016/j.energy.2015.12.096.
  • Bin Basir, M.A. and Binti Ahmad, F. (2014) Comparison of Swarm Algorithms for Feature Selections/Reductions, International Journal of Scientific and Engineering Research, 5, 479-486. doi: 10.1109/ISPACS.2007.4445974.
  • Dandy, G.C., Simpson, A.R., and Murphy L.J. (1996) An improved genetic algorithm for pipe network optimization, Water Resources Research, 32, 449-458. doi: 10.1029/95WR02917.
  • De Castro and Von Zuben, F. J. (2000) An evolutionary immune network for data clustering, In Neural Network, Proceedings Sixth Brazilian Symposium on, 84-89. doi: 10.1109/SBRN.2000.889718.
  • Gong M, Jiao L, Zhang L and Ma W. (2007) Improved real-valued clonal selection algorithm based on a novel mutation method, International Symposium on Intelligent Signal Processing and Communication Systems, ISPACS 2007, 662-665. doi: 10.1109/ISPACS.2007.4445974.
  • Goyal, S., and Patterh, M. S. (2016) Modified Bat Algorithm for Localization of Wireless Sensor Network, Wireless Personal Communications, 86(2), 657-670. doi: 10.1007/s11277-015-2950-9.
  • Generalized penalized function. (2015,June) .Retrieved from http://al-roomi.org/benchmarks/unconstrained/n-dimensions/172-generalized-penalized-function-no-1
  • Test functions and datasets. (2015, January). Retrieved from http://www.sfu.ca/~ssurjano/optimization.html.
  • Sindhuja, L. S., and Padmavathi, G. (2016) Replica Node Detection Using Enhanced Single Hop Detection with Clonal Selection Algorithm in Mobile Wireless Sensor Networks, Journal of Computer Networks and Communications. doi: 10.1155/2016/1620343.
  • Ulutas, B.H. and Kulturel-Konak, S. (2011) A review of clonal selection algorithm and its applications, Artificial Intelligence Review, 36(2), 117-138.doi:10.1007/s10462-011-9206-1.
  • Vatansever, F. and Şen, D. (2013) Design of PID Controller Simulator based on Genetic Algorithm, Uludağ University Journal of The Faculty of Engineering, 18(2), 7-18. doi: 10.17482/uujfe.33406.
  • Wolpert, D.H. and Macready, WG. (1997) No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation,1, 67-82. doi: 10.1109/4235.585893.
  • Yang X.S. (2010) A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative strategies for optimization, Springer Berlin Heidelberg, NICSO 2010, 65-74. doi: 10.1007/978-3-642-12538-6-6.
Konular Mühendislik ve Temel Bilimler
Dergi Bölümü Araştırma Makaleleri
Yazarlar

Yazar: Ezgi DENİZ ÜLKER
E-posta: eulker@eul.edu.tr

Bibtex @araştırma makalesi { uumfd336407, journal = {Uludağ University Journal of The Faculty of Engineering}, issn = {2148-4147}, address = {Uludağ Üniversitesi}, year = {2017}, volume = {22}, pages = {85 - 92}, doi = {10.17482/uumfd.336407}, title = {Performance Study of Bat Algorithm and Clonal Selection Algorithm for Optimization Tasks}, language = {en}, key = {cite}, author = {DENİZ ÜLKER, Ezgi} } @araştırma makalesi { uumfd336407, journal = {Uludağ University Journal of The Faculty of Engineering}, issn = {2148-4147}, address = {Uludağ Üniversitesi}, year = {2017}, volume = {22}, pages = {85 - 92}, doi = {10.17482/uumfd.336407}, title = {YARASA ALGORİTMASI VE KLONAL SEÇİM ALGORİTMASININ OPTİMİZASYON PROBLEMLERİ İLE PERFORMANS ANALİZİ}, language = {tr}, key = {cite}, author = {DENİZ ÜLKER, Ezgi} }
APA DENİZ ÜLKER, E . (2017). Performance Study of Bat Algorithm and Clonal Selection Algorithm for Optimization Tasks. Uludağ University Journal of The Faculty of Engineering, 22 (2), 85-92. DOI: 10.17482/uumfd.336407
MLA DENİZ ÜLKER, E . "Performance Study of Bat Algorithm and Clonal Selection Algorithm for Optimization Tasks". Uludağ University Journal of The Faculty of Engineering 22 (2017): 85-92 <http://dergipark.gov.tr/uumfd/issue/30563/336407>
Chicago DENİZ ÜLKER, E . "Performance Study of Bat Algorithm and Clonal Selection Algorithm for Optimization Tasks". Uludağ University Journal of The Faculty of Engineering 22 (2017): 85-92
RIS TY - JOUR T1 - YARASA ALGORİTMASI VE KLONAL SEÇİM ALGORİTMASININ OPTİMİZASYON PROBLEMLERİ İLE PERFORMANS ANALİZİ AU - Ezgi DENİZ ÜLKER Y1 - 2017 PY - 2017 N1 - doi: 10.17482/uumfd.336407 DO - 10.17482/uumfd.336407 T2 - Uludağ University Journal of The Faculty of Engineering JF - Journal JO - JOR SP - 85 EP - 92 VL - 22 IS - 2 SN - 2148-4147-2148-4155 M3 - doi: 10.17482/uumfd.336407 UR - http://dx.doi.org/10.17482/uumfd.336407 Y2 - 2017 ER -
EndNote %0 Uludağ University Journal of The Faculty of Engineering YARASA ALGORİTMASI VE KLONAL SEÇİM ALGORİTMASININ OPTİMİZASYON PROBLEMLERİ İLE PERFORMANS ANALİZİ %A Ezgi DENİZ ÜLKER %T YARASA ALGORİTMASI VE KLONAL SEÇİM ALGORİTMASININ OPTİMİZASYON PROBLEMLERİ İLE PERFORMANS ANALİZİ %D 2017 %J Uludağ University Journal of The Faculty of Engineering %P 2148-4147-2148-4155 %V 22 %N 2 %R doi: 10.17482/uumfd.336407 %U 10.17482/uumfd.336407