Yıl 2017, Cilt 22, Sayı 3, Sayfalar 43 - 60 2017-12-08

HAREKETLİ NESNELERİN UYARLANABİLİR BULANIK ZAMAN SERİLERİ VE ÜSSEL DÜZELTME TAHMİN TEKNİKLERİNİ KULLANARAK GERÇEK ZAMANLI YÖRÜNGELERİNİN İZLENMESİ
Real Time Trajectory Tracking of Moving Objects Using Adaptive Fuzzy Time Series and Exponential Smoothing Forecasting Techniques

Mustafa YAĞIMLI [1]

111 115

Bu çalışmada; gerçek zamanda kamera görüntüsünden alınan hedef cismin; dairesel, eğik atışa benzer ve manevralı dinamik hareket yapması durumunda, bir sonraki konumu veya nerede olacağı Adaptive Fuzzy Time Series (AFTS) ve Exponential Smoothing (ES) tahmin yöntemleriyle incelenmiştir. Bu hareketlerin hata değerlendirmesi, ortalama mutlak yüzde hata (MAPE) yöntemine göre yapılmıştır. Yapılan değerlendirmede, AFTS ile dairesel harekette %3.65, eğik atışa benzer harekette %9.12, manevralı dinamik harekette %19.23, ES ile dairesel harekette %4.48,  eğik atışa benzer harekette %1.13 ve manevralı dinamik harekette ise %0.61 elde edilmiştir. Dairesel harekette AFTS ES’den, eğik atışa benzer ve manevralı dinamik harekette ise ES AFTS’den daha iyi sonuç vermiştir. 

In his study; in cases where the targeted object which is taken from a real time camera shot is in a circular motion, quasi projectile motion and maneuvering dynamic motion, its later location where it will be is examined using the Adaptive Fuzzy Time Series (AFTS) and Exponential Smoothing (ES) estimation methods. Error evaluation of these motions was performed according to the Mean Absolute Percentage Error (MAPE) method. In the conducted evaluation, with AFTS, the circular motion was found to be 3.65%, quasi projectile motion 9.12%, and maneuvering dynamic motion 19.23%, and with ES, circular motion 4.48%, quasi projectile motion 1.13% and maneuvering dynamic motion was found to be 0.61%. AFTS gives better results than ES for the circular motion but ES gives better results than AFTS for quasi projectile and maneuvering dynamic motions.

  • Bourne, D., Corney, J., Gupta, S.K. (2011) Recent Advances and Future Challenges in Automated Manufacturing Planning, ASME J Comput Inf Sci Eng., 11(2) Doi: 10.1115/1.3593411
  • Chakraborty, B., Meher, S. (2011) 2D Trajectory-based Position Estimation and Tracking of the Ball in a Basketball Video, 2nd International Conference on Trends in Optics and Photonics, India.
  • Chakraborty, B., Meher, S. (2012) Real Time Position Estimation and Tracking of a Basketball, IEEE International Conference on Signal Processing, Computing and Control (ISPC), 1-6. Doi: 10.1109/ISPCC.2012.6224370
  • Chen, X., Schonfeld, D., Khokhar, A. (2007) Localization and Trajectory Estimation of Mobile Objects with a Single Sensor, Statistical Signal Processing, IEEE/SP, SSP’07, 363-367. Doi: 0.1109/SSP.2007.4301281
  • Eustice, R., Pizarro, O., Singh, H. (2004) Visually Augmented Navigation in an Unstructered Environment Using a Delayed State History, Proceedings of the 2004 International Conference on Robotics&Automation, IEEE. Doi: 10.1109/ROBOT.2004.1307124
  • Facco, P., Doplicher, F., Bezzo, F., Barolo, M. (2009) Moving Average PLS Soft Sensor for Online Product Quality Estimation in an Industrial Batch Polymerization Process, Journal of Process Control, 19(3), 520-529. doi.org/10.1016/j.jprocont.2008.05.002
  • Hsieh, Y-S., Su Y.C., Chen, L.G. (2012) Robust Moving Object Tracking and Trajectory Prediction for Visual Navigation in Dynamic Environments, IEEE International Conference on Consumer Electronics (ICCE), 978-1-4577-0231-0/12/$26.00. Doi: 10.1109/ICCE.2012.6162066
  • Hu, W., Xiao, X., Xie, D., Tan, T., Maybank, S. (2004) Traffic Accident Prediction Using 3-D Model-based Vehicle Tracking, IEEE Transactions on Vehicular Technology, 53(3), 677-694. Doi: 10.1109/TVT.2004.825772
  • Hu, Z., Fan, X., Song, Y., Liang, D. (2008) Joint Trajectory Tracking and Recognition Based on Bi-directional non-linear Learning, Image and Vision Computing, Elsevier, Image and Vision Computing, 10(1016). doi.org/10.1016/j.imavis.2008.11.011
  • Huang, Y-L., Horng, S-J., Kao, T-W., Kuo, I-H., Takao, T. (2012) A hybrid forecasting model based on adaptive fuzzy time series and particle swarm optimization, International Symposium on Biometrics and Security Technologies, 66-70. Doi: 10.1109/ISBAST.2012.23
  • Kosut, O., Turovsky, A., Sun, J., Ezovski, M., Tong, L., Whipps, G. (2007) Integrated Mobile and Static Sensing for Target Tracking, In Military Communications Conference, MILCOM 2007, IEEE, 1-7. doi:10.1115/1.2764515
  • Kumar, M., Garg, D.P. (2004) Sensor-Based Estimation and Control of Forces and Moments in Multiple Cooperative Robot, ASME J. Dyn. Sys. Meas., Control, 126(2), 276-283. Doi: 10.1115/1.1766029
  • Marques, P., Dias, J. (2007) Moving Target Trajectory Estimation in SAR Spatial Domain Using a Single Sensor, IEEE Trans. on Aerospace and Electronic Systems, 43(3), 864-874.
  • Nahmias, S. (1997) Production and Operations Analysis, McGraw-Hill International Editions. USA.
  • Nind, J., Torra, V. (2009) Towards the Evaluation of Time Series Prediction Methods, Information Sciences, 179(11), 1663-1677. Doi: 10.1016/j.ins.2009.01.024
  • Ohno, K., Takafumi, N., Satoshi, T. (2006) Real-time Robot Trajectory Estimation and 3d Map Construction using 3d Camera, Intelligent Robots and Systems, International Conference on IEEE/RSJ. Doi: 10.1109/IROS.2006.282027
  • Palit, A.K., Popovic, D. (2005) Computational intelligence in time series forecasting: Theory and engineering applications, Advances in Industrial Control, Springer Verlag, NJ USA.
  • Pantazopoulos, S.N., Pappis, C.P. (1996) A new adaptive method for extrapolative forecasting algorithms, European Journal of Operational Research, 94, 106-111. doi.org/10.1016/0377-2217(95)00195-6
  • Piepmeier, J.A., McMurray, G.V., Lipkin, H. (1998) Tracking a Moving Target with Model Independent Visual Servoing: a Predictive Estimation Approach. Doi: 10.1109/ROBOT.1998.680746
  • Piepmeier, J.A., McMurray, G.V., Lipkin H. (2004) Uncalibrated Dynamic Visual Servoing, IEEE Transactions on Robotics and Automation, 20(1). Doi: 10.1109/TRA.2003.820923
  • Prėvost, C.G., Desbiens, A., Gagnon, E. (2007) Extended Kalman Filter for State Estimation and Trajectory Prediction of a Moving Object Detected by an Unmanned Aerial Vehicle, Proceedings of the 2007 American Control Conference, USA, 1805-1810. Doi: 10.1109/ACC.2007.4282823
  • Ryan, E., Pizarro, O., Singh, H. (2004) Visually Augmented Navigation in an Unstructured Environment Using a Delayed State History, Proceedings of the 2004 IEEE, International Conference on Robotics & Automation, 25-32. Doi: .1109/ROBOT.2004.1307124
  • Shen, G., Kong, X., Chen, X. (2011) A Short-term Traffic Flow Intelligent Hybrid Forecasting Model and Its Application, Control Engineering and Applied Informatics, 13(3), 65-73.
  • Tang, Y., Huang, P. (2006) Boost-Phase Ballistik Missile Trajectory Estimation with Ground Based Radar, Journal of Systems Engineering and Electronics, 17 (4), 705-708. Doi: 10.1016/S1004-4132(07)60001-2
  • Tsaurs, R.C., Kuo, T.C.(2011) The Adaptive Fuzzy Time Series Model with an Application to Taiwan’s Tourism Demand, Expert Systems with Applications, Elsevier, 38, 9164-9167. doi.org/10.1016/j.eswa.2011.01.059
  • Unrath, M., Watt, D., Alpay, M. (2007) High Performance Motion Tracking Control for Electronic Manufacturing, ASME J. Dyn. Sys. Meas., Control, 129(6), 767-776. doi:10.1115/1.2789467
  • Vallery, H., Van Asseldonk, E.H., Buss, M., Van Der Kooij, H. (2009) Reference Trajectory Generation for Rehabilitation Robots: Complementary Limb Motion Estimation, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17(1), 23-30. Doi: 10.1109/TNSRE.2008.2008278
  • Yagimli, M., Varol, H.S. (2008) Low Cost Target Recognising and Tracking Sensory System Mobile Robot, Journal of Naval Science and Engineering, 4(1), 17-26.
  • Yagimli, M., Varol, H.S. (2009) Real Time Color Composition Based Moving Target Recognition, Journal of Naval Science and Engineering, 5(2), 89-97.
  • Yagimli, M., Varol, H.S. (2009) Adaptive Estimation Algorithm-Based Target Tracking, Journal of Naval Science and Engineering, 5(3), 16-25.
  • Yagimli, M., Varol, H.S. (2009) A GPS-based system design for the recognition and tracking of moving targets, Proceedings of 4th International Conference on Recent Advances in Space Technologies, 978-1-4244-3626-2/09 IEEE, 6-12. Doi: 10.1109/RAST.2009.5158262.
  • Yagimli, M. (2010) An Optoelectronics System Develop Which Recognizes Moving Objects and Detect Their Orbit, Marmara University, Institute of Pure and Applied Sciences, Ph.D. Thesis.
  • Yang, Y., Polycarpou, M.M., Mimai, A.A. (2007) Multi-UAV Cooperative Search Using an Opportunistic Learning Method, ASME J. Dyn. Sys. Meas., Control, 129 (5), 716-728. Doi:10.1115/1.2764515
  • Yang, J-L., Ji, H-B. (2010) High Maneuvering Target-Tracking Based on Strong Tracking Modified Input Estimation, Scientific Research and Essays, 5(13), 1683-1689.
  • Zadeh, L. (1965) Fuzzy Sets, Information and Controls.
  • Zhou, S., Yong, C., Jianjun, S. (2004) Statistical Estimation and Testing for Variation Root-cause Identification of Multistage Manufacturing Processes, IEEE Transactions on Automation Science and Engineering, 1(1), 73-83. Doi: 10.1109/TASE.2004.829427
Konular Mühendislik ve Temel Bilimler
Dergi Bölümü Araştırma Makaleleri
Yazarlar

Yazar: Mustafa YAĞIMLI (Sorumlu Yazar)
E-posta: mustafayagimli@beykent.edu.tr

Bibtex @araştırma makalesi { uumfd364093, journal = {Uludağ University Journal of The Faculty of Engineering}, issn = {2148-4147}, address = {Uludağ Üniversitesi}, year = {2017}, volume = {22}, pages = {43 - 60}, doi = {10.17482/uumfd.364093}, title = {HAREKETLİ NESNELERİN UYARLANABİLİR BULANIK ZAMAN SERİLERİ VE ÜSSEL DÜZELTME TAHMİN TEKNİKLERİNİ KULLANARAK GERÇEK ZAMANLI YÖRÜNGELERİNİN İZLENMESİ}, key = {cite}, author = {YAĞIMLI, Mustafa} }
APA YAĞIMLI, M . (2017). HAREKETLİ NESNELERİN UYARLANABİLİR BULANIK ZAMAN SERİLERİ VE ÜSSEL DÜZELTME TAHMİN TEKNİKLERİNİ KULLANARAK GERÇEK ZAMANLI YÖRÜNGELERİNİN İZLENMESİ. Uludağ University Journal of The Faculty of Engineering, 22 (3), 43-60. DOI: 10.17482/uumfd.364093
MLA YAĞIMLI, M . "HAREKETLİ NESNELERİN UYARLANABİLİR BULANIK ZAMAN SERİLERİ VE ÜSSEL DÜZELTME TAHMİN TEKNİKLERİNİ KULLANARAK GERÇEK ZAMANLI YÖRÜNGELERİNİN İZLENMESİ". Uludağ University Journal of The Faculty of Engineering 22 (2017): 43-60 <http://dergipark.gov.tr/uumfd/issue/31375/364093>
Chicago YAĞIMLI, M . "HAREKETLİ NESNELERİN UYARLANABİLİR BULANIK ZAMAN SERİLERİ VE ÜSSEL DÜZELTME TAHMİN TEKNİKLERİNİ KULLANARAK GERÇEK ZAMANLI YÖRÜNGELERİNİN İZLENMESİ". Uludağ University Journal of The Faculty of Engineering 22 (2017): 43-60
RIS TY - JOUR T1 - HAREKETLİ NESNELERİN UYARLANABİLİR BULANIK ZAMAN SERİLERİ VE ÜSSEL DÜZELTME TAHMİN TEKNİKLERİNİ KULLANARAK GERÇEK ZAMANLI YÖRÜNGELERİNİN İZLENMESİ AU - Mustafa YAĞIMLI Y1 - 2017 PY - 2017 N1 - doi: 10.17482/uumfd.364093 DO - 10.17482/uumfd.364093 T2 - Uludağ University Journal of The Faculty of Engineering JF - Journal JO - JOR SP - 43 EP - 60 VL - 22 IS - 3 SN - 2148-4147-2148-4155 M3 - doi: 10.17482/uumfd.364093 UR - http://dx.doi.org/10.17482/uumfd.364093 Y2 - 2017 ER -
EndNote %0 Uludağ University Journal of The Faculty of Engineering HAREKETLİ NESNELERİN UYARLANABİLİR BULANIK ZAMAN SERİLERİ VE ÜSSEL DÜZELTME TAHMİN TEKNİKLERİNİ KULLANARAK GERÇEK ZAMANLI YÖRÜNGELERİNİN İZLENMESİ %A Mustafa YAĞIMLI %T HAREKETLİ NESNELERİN UYARLANABİLİR BULANIK ZAMAN SERİLERİ VE ÜSSEL DÜZELTME TAHMİN TEKNİKLERİNİ KULLANARAK GERÇEK ZAMANLI YÖRÜNGELERİNİN İZLENMESİ %D 2017 %J Uludağ University Journal of The Faculty of Engineering %P 2148-4147-2148-4155 %V 22 %N 3 %R doi: 10.17482/uumfd.364093 %U 10.17482/uumfd.364093